【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說(shuō)明殘差平方和越大;

②對(duì)于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越。

③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過(guò)點(diǎn);

是用來(lái)判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對(duì)于兩個(gè)分類變量適合;

以上幾種說(shuō)法正確的序號(hào)是__________

【答案】②③④.

【解析】分析:根據(jù)回歸直線方程與獨(dú)立性檢驗(yàn)的實(shí)際意義作出判斷.

詳解:在回歸分析中,相關(guān)指數(shù)越大,殘差平方和越小,回歸效果就越好,錯(cuò)誤;

在回歸分析中,相關(guān)指數(shù)的絕對(duì)值越接近于1,相關(guān)程度就越大,正確

回歸直線必經(jīng)過(guò)樣本中心點(diǎn),③正確;

是用來(lái)判斷兩個(gè)分類變量是否有關(guān)系的隨機(jī)變量,只對(duì)于兩個(gè)分類變量適合,正確.

故答案為②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, 已知圓 ,橢圓 ,為橢圓右頂點(diǎn).過(guò)原點(diǎn)且異于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),直線與圓的另一交點(diǎn)為,直線與圓的另一交點(diǎn)為,其中.設(shè)直線的斜率分別為

1)求的值;

2)記直線的斜率分別為,是否存在常數(shù),使得?若存在,求值;若不存在,說(shuō)明理由;

3)求證:直線必過(guò)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,點(diǎn)分別是,的中點(diǎn),則下列說(shuō)法正確的是( )

A. B. 所成角為

C. 平面 D. 與平面所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“作品獲得一等獎(jiǎng)”; 乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”; 丁說(shuō):“作品獲得一等獎(jiǎng)”.

若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D為棱AC的中點(diǎn),側(cè)面A1ACC1為邊長(zhǎng)為2的菱形,AC⊥CB,BC=1.

(1)證明:AC1⊥平面A1BC;
(2)求三棱錐B﹣A1B1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)為某一個(gè)三角形的邊長(zhǎng),則實(shí)數(shù)m的取值范圍是(
A.[ ,1]
B.[0,1]
C.[1,2]
D.[ ,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬(wàn)元)與該月產(chǎn)量x(萬(wàn)件)之間有如下一組數(shù)據(jù):

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通過(guò)畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;

②通過(guò)建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬(wàn)件時(shí),此時(shí)產(chǎn)品的總成本為多少萬(wàn)元?

(均精確到0.001)

附注:①參考數(shù)據(jù):

,

②參考公式:相關(guān)系數(shù),

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人做定點(diǎn)投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒(méi)有影響.

(1)若甲投籃3次,求至少命中2次的概率;

(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案