【題目】函數(shù),當(dāng)時(shí),恒成立,則的最大值是_____.
【答案】
【解析】
先根據(jù)恒成立寫出有關(guān)a,b的約束條件,再在aob系中畫出可行域,由斜率模型可得
.又,令 t,則1≤t≤4,利用y=t在[1,4]上單調(diào)遞增,即可得出結(jié)論.
令g(m)=(3a﹣2)m+b﹣a.
由題意當(dāng)m∈[0,1]時(shí),0≤f(a)≤1可得
0≤g(0)≤1,
0≤g(1)≤1,
∴0≤b﹣a≤1,0≤2a+b﹣2≤1.
即 a≤b≤1+a①,2≤2a+b≤3 ②.
把(a,b)看作點(diǎn)畫出可行域,由斜率模型可看作是原點(diǎn)與(a,b)連線的斜率,由圖可得當(dāng)(a,b)取點(diǎn)A時(shí),原點(diǎn)與(a,b)連線的斜率最大,與b﹣a=0重合時(shí)原點(diǎn)與(a,b)連線的斜率最小.
∴14.
又 ,令 t,則1≤t≤4,
∵y=t在[1,4]上單調(diào)遞增,
∴t=4時(shí),即a,b時(shí),y有最大值是.
則的最大值是
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以雙曲線上一點(diǎn)為圓心作圓,該圓與軸相切于的一個(gè)焦點(diǎn),與軸交于兩點(diǎn),若,則雙曲線的離心率________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓:的焦距為2,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于,兩點(diǎn),問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個(gè)投籃位置,在A點(diǎn)投中一球得1分,在B點(diǎn)投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計(jì)為投籃兩次),教師甲在A點(diǎn)和B點(diǎn)投中的概率分別為和,且在A,B兩點(diǎn)投中與否相互獨(dú)立.
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),點(diǎn)為橢圓短軸的上端點(diǎn),為橢圓上異于點(diǎn)的任一點(diǎn),若點(diǎn)到點(diǎn)距離的最大值僅在點(diǎn)為短軸的另一端點(diǎn)時(shí)取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關(guān)于原點(diǎn)的對(duì)稱點(diǎn),也異于點(diǎn),直線、分別與軸交于、兩點(diǎn),試問以線段為直徑的圓是否過定點(diǎn)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的極坐標(biāo)方程,并求出曲線與公共弦所在直線的極坐標(biāo)方程;
(2)若射線與曲線交于兩點(diǎn),與曲線交于點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.
(1)求證:平面PAD;
(2)在棱AB上是否存在一點(diǎn)F,使得平面平面PCE?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com