設(shè)函數(shù)f(x)=log3(9x)·log3(3x),≤x≤9.
(1)若m=log3x,求m的取值范圍.
(2)求f(x)的最值,并給出最值時對應的x的值.

(1)[-2,2]    (2)x=9時f(x)取得最大值12

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期;
(2)判斷函數(shù)的奇偶性, 并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x+sin x.
(1)設(shè)P,Q是函數(shù)f(x)圖像上相異的兩點,證明:直線PQ的斜率大于0;
(2)求實數(shù)a的取值范圍,使不等式f(x)≥axcos x在上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•山東)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為立方米,且l≥2r.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為c(c>3)千元.設(shè)該容器的建造費用為y千元.
(1)寫出y關(guān)于r的函數(shù)表達式,并求該函數(shù)的定義域;
(2)求該容器的建造費用最小時的r.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)a為常數(shù)且a>0.
(1)證明:函數(shù)f(x)的圖像關(guān)于直線x=對稱;
(2)若x0滿足f(f(x0))= x0,但f(x0)≠x0,則x0稱為函數(shù)f(x)的二階周期點,如果f(x)有兩個二階周期點x1,x2,試確定a的取值范圍;
(3)對于(2)中的x1,x2,和a,設(shè)x3為函數(shù)f(f(x))的最大值點,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),記△ABC的面積為S(a),討論S(a)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2x+k·2-x,k∈R.
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)k的值;
(2)若對任意的x∈[0,+∞)都有f(x)>2-x成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計),切點為M,并把該地塊分為兩部分.現(xiàn)以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數(shù))的圖象,且點M到邊OA距離為
(1)當時,求直路所在的直線方程;
(2)當t為何值時,地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足f(n)=,其中,a,b為常數(shù),n∈N,f(0)=A.已知栽種3年后該樹木的高度為栽種時高度的3倍.
(1)栽種多少年后,該樹木的高度是栽種時高度的8倍;
(2)該樹木在栽種后哪一年的增長高度最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)f(x)=sin2ax-sinaxcosax(a>0)的圖象與直線y=m相切,相鄰切點之間的距離為.
(1)求m和a的值;
(2)若點A(x0,y0)是y=f(x)圖象的對稱中心,且x0,求點A的坐標.

查看答案和解析>>

同步練習冊答案