【題目】下列命題中所有正確的序號是
①函數(shù)f(x)=ax1+3(a>0且a≠1)的圖象一定過定點(diǎn)P(1,4);
②函數(shù)f(x﹣1)的定義域是(1,3),則函數(shù)f(x)的定義域?yàn)椋?,4);
③已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=8,則f(2)=﹣8;
④f(x)= 為奇函數(shù).

【答案】①④
【解析】解:當(dāng)x=1時(shí),ax1=a0=1(a>0且a≠1)恒成立,故f(1)=4恒成立,故函數(shù)f(x)=ax1+3(a>0且a≠1)的圖象一定過定點(diǎn)P(1,4),故①正確;函數(shù)f(x﹣1)的定義域是(1,3),則函數(shù)f(x)的定義域?yàn)椋?,2),故②錯(cuò)誤;
已知f(x)=x5+ax3+bx﹣8,且f(﹣2)=8,則f(2)=﹣24,故③錯(cuò)誤;
f(x)= 的定義域?yàn)閧x|x≠0},且f(﹣x)= = = =﹣f(x),故f(x)為奇函數(shù),故④正確;
所以答案是:①④
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí),f(x)=log (﹣x+1).
(1)求f(x)的解析式;
(2)若f(a﹣1)<﹣1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2﹣2x+4y﹣4=0,是否存在斜率為1的直線l,使l被圓C截得的弦長AB為直徑的圓過原點(diǎn),若存在求出直線的方程l,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 是自然對數(shù)的底數(shù)).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為單調(diào)遞減的等差數(shù)列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前項(xiàng)n和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓,點(diǎn)為拋物線上的動點(diǎn), 為坐標(biāo)原點(diǎn),線段的中點(diǎn)的軌跡為曲線.

(1)求拋物線的方程;

(2)點(diǎn)是曲線上的點(diǎn),過點(diǎn)作圓的兩條切線,分別與軸交于兩點(diǎn).

面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= + 的圖象關(guān)于y軸對稱,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,x∈[3,5].
(1)利用定義證明函數(shù)f(x)單調(diào)遞增;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形中, , , ,四邊形為矩形, ,平面平面

(Ⅰ)求證: 平面

(Ⅱ)求平面與平面所成銳二面角的余弦值;

(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案