【題目】已知函數(shù), 是自然對(duì)數(shù)的底數(shù)).

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析: (Ⅰ)先求出函數(shù)的導(dǎo)函數(shù),將代入可得在此切點(diǎn)處的斜率,再由曲線方程可求出切點(diǎn)坐標(biāo),利用點(diǎn)斜式式寫出切線方程; (Ⅱ)求出的導(dǎo)函數(shù)函數(shù),令為,再求的導(dǎo)函數(shù),去判斷的單調(diào)性,再進(jìn)一步判斷的單調(diào)性,可求出的最小值,將恒成立問題轉(zhuǎn)為關(guān)于的不等式即可.注意對(duì)的分類討論.

試題解析:(Ⅰ)當(dāng)時(shí),有,

又因?yàn)?/span>,

∴曲線在點(diǎn)處的切線方程為,即

(Ⅱ)因?yàn)?/span>,令

)且函數(shù)上單調(diào)遞增

當(dāng)時(shí),有,此時(shí)函數(shù)上單調(diào)遞增,則

(。┤時(shí),有函數(shù)上單調(diào)遞增,

恒成立;

時(shí),則在存在,

此時(shí)函數(shù) 上單調(diào)遞減, 上單調(diào)遞增且

所以不等式不可能恒成立,故不符合題意;

當(dāng)時(shí),有,存在,此時(shí)上單調(diào)遞減, 上單調(diào)遞增所以函數(shù)上先減后增

,則函數(shù)上先減后增

所以不等式不可能恒成立,故不符合題意;

綜上所述,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的零點(diǎn).

(Ⅰ)求的取值范圍;

(Ⅱ)記兩個(gè)零點(diǎn)分別為,且,已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請(qǐng)完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績與班級(jí)有關(guān)”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

(Ⅰ)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;

(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}a13,a1021,通項(xiàng)an相應(yīng)的函數(shù)是一次函數(shù).

(1) 求數(shù)列{an}的通項(xiàng)公式;

(2) {bn}是由a2,a4a6,a8,…組成,試求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.

C的普通方程和直線的傾斜角;

設(shè)點(diǎn)(0,2),交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.

(1)U(AB);

(2)若集合C={x|2xa>0},滿足BCC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.

(1)若為真命題,求實(shí)數(shù)的取值范圍;

(2)如果為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知函數(shù)f(x)的定義域?yàn)閇0,1],求f(x2+1)的定義域;

(2)已知f()的定義域?yàn)閇0,3],求f(x)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案