分析 由an=an-1+an-2+…+a2+a1(n∈N*,n≥2),an-1=an-2+an-3+…+a2+a1(n∈N*,n≥3),知$\frac{{a}_{n}}{{a}_{n-1}}$,由此能求出數(shù)列{an}的通項公式
解答 解:∵an=an-1+an-2+…+a2+a1(n∈N*,n≥2),
∴an-1=an-2+an-3+…+a2+a1(n∈N*,n≥3),
∴兩式相減得an-an-1=an-1,
即$\frac{{a}_{n}}{{a}_{n-1}}$=2,
∴當n≥2時,數(shù)列{an}是以a2=a1=5為首項,以2為公比的等比數(shù)列,
∴an=a2•2n-2=5•2n-2.
故數(shù)列{an}的通項公式為${a}_{n}=\left\{\begin{array}{l}{5,n=1}\\{5×{2}^{n-2},n≥2}\end{array}\right.$.
點評 本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要注意通項公式的求解方法和數(shù)列遞推公式的靈活運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1067 | B. | 1068 | C. | 2101 | D. | 2102 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com