【題目】如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D.連接CF交AB于點E.
(1)求證:DE2=DBDA;
(2)若DB=2,DF=4,試求CE的長.
【答案】
(1)證明:連接OF.
因為DF切⊙O于F,所以∠OFD=90°.
所以∠OFC+∠CFD=90°.
因為OC=OF,所以∠OCF=∠OFC.
因為CO⊥AB于O,所以∠OCF+∠CEO=90°.
所以∠CFD=∠CEO=∠DEF,所以DF=DE.
因為DF是⊙O的切線,所以DF2=DBDA.
所以DE2=DBDA
(2)解:∵DF2=DBDA,DB=2,DF=4.
∴DA=8,從而AB=6,則OC=3.
又由(1)可知,DE=DF=4,∴BE=2,OE=1.
從而 在Rt△COE中,
【解析】(1)連接OF,利用切線的性質及角之間的互余關系得到DF=DE,再結合切割線定理證明DE2=DBDA,即可求出DE.(2)求出BE=2,OE=1,利用勾股定理求CE的長.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若 在區(qū)間 上是單調函數(shù),求實數(shù)的取值范圍.
(2)求函數(shù)在上的最大值和最小值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內橢圓上的一點, ,求點的坐標;
(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(.(12分)在一次購物抽獎活動中,假設某10張券中有一等獎獎券1張,可獲價值50元的獎品;有二等獎獎券3張,每張可獲價值10元的獎品;其余6張沒獎。某顧客從此10張獎券中任抽2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值X(元)的概率分布列。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為調查高中生選修課的選修傾向與性別關系,隨機抽取50名學生,得到如表的數(shù)據(jù)表:
傾向“平面幾何選講” | 傾向“坐標系與參數(shù)方程” | 傾向“不等式選講” | 合計 | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計 | 20 | 12 | 18 | 50 |
(1)根據(jù)表中提供的數(shù)據(jù),選擇可直觀判斷“選課傾向與性別有關系”的兩種,作為選課傾向的變量的取值,并分析哪兩種選擇傾向與性別有關系的把握大;
附:K2= .
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)在抽取的50名學生中,按照分層抽樣的方法,從傾向“平面幾何選講”與傾向“坐標系與參數(shù)方程”的學生中抽取8人進行問卷.若從這8人中任選3人,記傾向“平面幾何選講”的人數(shù)減去與傾向“坐標系與參數(shù)方程”的人數(shù)的差為ξ,求ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個內角,則( )
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{bn}的前n項和 .
(1)求數(shù)列{bn}的通項公式;
(2)設數(shù)列{an}的通項 ,求數(shù)列{an}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)的表達式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項公式為an=f( )(n∈N),則此數(shù)列前2017項的和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com