5.已知P(2$\sqrt{2}$,$\sqrt{5}$)在雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1上,其左、右焦點(diǎn)分別為F1、F2,三角形PF1F2的內(nèi)切圓切x軸于點(diǎn)M,則$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$的值為( 。
A.2$\sqrt{2}$-1B.2$\sqrt{2}$+1C.2$\sqrt{2}$-2D.2$\sqrt{2}$-$\sqrt{5}$

分析 根據(jù)題意,利用切線長(zhǎng)定理,再利用雙曲線的定義,把|PF1|-|PF2|=4,轉(zhuǎn)化為|AF1|-|HF2|=4,從而求得點(diǎn)M的橫坐標(biāo),即可得出結(jié)論.

解答 解:P(2$\sqrt{2}$,$\sqrt{5}$)在雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1上,可得b=$\sqrt{5}$,
∴F1(-3,0)、F2(3,0),
如圖,設(shè)M(x,0),內(nèi)切圓與x軸的切點(diǎn)是點(diǎn)M,PF1、PF2與內(nèi)切圓的切點(diǎn)分別為N、H,
∵由雙曲線的定義可得|PF1|-|PF2|=2a=4,
由圓的切線長(zhǎng)定理知,|PN|=|PH|,故|NF1|-|HF2 |=4,
即|MF1|-|HF2|=4,
設(shè)內(nèi)切圓的圓心橫坐標(biāo)為x,則點(diǎn)M的橫坐標(biāo)為x,
故(x+3)-(3-x)=4,∴x=2.
∴$\overrightarrow{MP}$•$\overrightarrow{M{F}_{2}}$=(2$\sqrt{2}$-2,$\sqrt{5}$)•(3-2,0)=2$\sqrt{2}$-2,
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義、切線長(zhǎng)定理,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想以及數(shù)形結(jié)合的數(shù)學(xué)思想,正確運(yùn)用雙曲線的定義是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知sin(3π+θ)=$\frac{1}{2}$,求$\frac{sin(θ-\frac{π}{2})}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{5π}{2}-θ)}{cos(θ+2π)cos(3π+θ)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對(duì)邊,設(shè)向量$\overrightarrow{p}$=(b-c,a-c),$\overrightarrow{q}$=(c+a,b),若$\overrightarrow{p}$∥$\overrightarrow{q}$,則角A的大小是( 。
A.90°B.45°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在數(shù)列{an}中,a1=1,an=$\frac{{{a_{n-1}}}}{{c{a_{n-1}}+1}}$(c為常數(shù),n∈N*,n≥2),又a1,a2,a5成公比不為l的等比數(shù)列.
(I)求證:{$\frac{1}{a_n}$}為等差數(shù)列,并求c的值;
(Ⅱ)設(shè){bn}滿足b1=$\frac{2}{3}$,bn=an-1an+1(n≥2,n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在(-∞,0)∪(0,+∞)的奇函數(shù),當(dāng)x∈(-∞,0)時(shí),f(x)=x2+2x,那么當(dāng)x∈(0,+∞)時(shí),f(x)=-x2+2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)fn(x)=(1+x)n,n∈N*
(1)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù);
(2)若h(x)=fn(x)+fn($\frac{1}{x}$),求h2011(x)在區(qū)間[$\frac{1}{3}$,2]上的最大值與最小值;
(3)證明:Cmm+2Cmm+1+3Cmm+2+…+nCmm+n-1=$\frac{(m+1)n+1}{m+2}$•Cm+1m+n(m,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=|x|-$\frac{1}{1+{x}^{2}}$+1,
(1)證明:函數(shù)f(x)在[0,+∞)上單調(diào)遞增.
(2)解不等式f(x)>f(2x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.y=$\frac{1}{x+1}$B.y=2x-1C.y=-|x|D.y=x2-3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個(gè)正四棱臺(tái),其上、下底面均為正方形,邊長(zhǎng)分別為8cm和18cm,側(cè)棱長(zhǎng)為13cm,則其表面積為1012cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案