分析 (Ⅰ)由已知條件得△AFE∽△CBD,從而∠AFE=∠CBD,又B,E,F(xiàn),C四點(diǎn)共圓,得∠CBD=∠CBE=90°,由此能證明CA是△ABC外接圓的直徑.
(Ⅱ)連結(jié)CE,由CE為B,E,F(xiàn),C所共圓的直徑,得CD=CE,由切線性質(zhì)得AC⊥DC,由此能求出過B,E,F(xiàn),C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
解答 (1)證明:∵BC•AE=DC•AF,
∴$\frac{BC}{AF}=\frac{DC}{AE}$…(1分)
又 DC為圓的切線
∴∠DCB=∠EAF…(2分)
∴△AFE∽△CBD…(3分)
∴∠AFE=∠CBD…(4分)
又B,E,F(xiàn),C四點(diǎn)共圓
∴∠AFE=∠CBE…(5分)
∴∠CBD=∠CBE=90°
∴CA是△ABC外接圓的直徑…(6分)
(Ⅱ)解:連結(jié)CE,∵∠CBE=90°
∴CE為B,E,F(xiàn),C所共圓的直徑…(7分)
∵DB=BE,且BC⊥DE
∴CD=CE…(8分)
∵DC為圓的切線,AC為該圓的直徑
∴AC⊥DC…(9分)
設(shè)DB=BE=EA=a,在Rt△ACD中,
CD2=BD•DA=3a2,AC2=AB•AD=6a2,
∴$\frac{C{D}^{2}}{A{C}^{2}}$=$\frac{1}{2}$,
∴$\frac{C{E}^{2}}{A{C}^{2}}$=$\frac{1}{2}$,
∴過B,E,F(xiàn),C四點(diǎn)的圓的面積與△ABC外接圓面積的比值為$\frac{1}{2}$.
點(diǎn)評 本題考查三角形外接圓直徑的證明,考查兩圓半徑比值的求法,四點(diǎn)共圓的性質(zhì)的靈活運(yùn)用是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂心 | B. | 內(nèi)心 | C. | 外心 | D. | 重心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com