如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
(3)若M是PC的中點,求三棱錐M-ACD的體積.
[證明] (1)由已知底面ABCD是直角梯形,AB∥DC,
又AB⊄平面PCD,CD⊂平面PCD,
∴AB∥平面PCD.
(2)在直角梯形ABCD中,過C作CE⊥AB于點E,則四邊形ADCE為矩形,
∴AE=DC=1
又AB=2,∴BE=1,
在Rt△BEC中,∠ABC=45°,
∴CE=BE=1,CB=,∴AD=CE=1,
則AC==,AC2+BC2=AB2,
∴BC⊥AC.
又PA⊥平面ABCD,∴PA⊥BC,
又PA∩AC=A,∴BC⊥平面PAC.
(3)∵M是PC中點,
∴M到平面ADC的距離是P到平面ADC距離的一半.
∴VM-ACD=S△ACD·(PA)=×(×1×1)×=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知某幾何體的俯視圖是如圖所示的邊長為2的正方形,正視圖與側(cè)視圖是邊長為2的正三角形,則其表面積是( )
A.8 B.12
C.4(1+) D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E為AB的中點,將△ADE與△BEC分別沿ED、EC向上折起,使A、B重合于點P,則三棱錐P-DCE的外接球的體積為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應(yīng)的俯視圖的面積為S,則S的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
側(cè)棱與底面垂直的棱柱稱為直棱柱.已知直三棱柱ABC-A1B1C1的各頂點都在球O的球面上,且AB=AC=1,BC=,若球O的體積為π,則這個直三棱柱的體積等于( )
A.1 B.
C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
l1、l2、l3是空間三條不同的直線,則下列命題正確的是( )
A.l1⊥l2,l2⊥l3⇒l1∥l3
B.l1⊥l2,l2∥l3⇒l1⊥l3
C.l1∥l2∥l3⇒l1、l2、l3共面
D.l1、l2、l3共點⇒l1、l2、l3共面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點,下面四個結(jié)論中不成立的是( )
A.BC∥平面PDF B.DF⊥平面PAE
C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com