【題目】數(shù)獨游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨比賽,該區(qū)甲、乙、丙、丁四所學校的學生積極參賽,參賽學生的人數(shù)如表所示:
中學 | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 30 | 40 | 20 | 10 |
為了解參賽學生的數(shù)獨水平,該科技館采用分層抽樣的方法從這四所中學的參賽學生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學各抽取多少名學生?
(Ⅱ)從參加問卷調(diào)查的30名學生中隨機抽取2名,求這2名學生來自同一所中學的概率;
(Ⅲ)在參加問卷調(diào)查的30名學生中,從來自甲、丙兩所中學的學生中隨機抽取2名,用X表示抽得甲中學的學生人數(shù),求X的分布列.
【答案】解:(Ⅰ)由題意知,四所中學報名參加數(shù)獨比賽的學生總人數(shù)為100名, 抽取的樣本容量與總體個數(shù)的比值為 ,
所以甲、乙、丙、丁四所中學各抽取的學生人數(shù)分別為9,12,6,3.
(Ⅱ)設“從30名學生中隨機抽取兩名學生,這兩名學生來自同一所中學”為事件A,
從30名學生中隨機抽取兩名學生的取法共有 種,
來自同一所中學的取法共有 .
所以 .
答:從30名學生中隨機抽取兩名學生來自同一所中學的概率為 .
(Ⅲ)由(Ⅰ)知,30名學生中,來自甲、丙兩所中學的學生人數(shù)分別為9,6.
依題意得,X的可能取值為0,1,2,
,
,
.
所以X的分布列為:
X | 0 | 1 | 2 |
P |
|
|
|
【解析】(Ⅰ)四所中學報名參加數(shù)獨比賽的學生總人數(shù)為100名,抽取的樣本容量與總體個數(shù)的比值 ,由此能求出甲、乙、丙、丁四所中學各抽取的學生人數(shù).(Ⅱ)從30名學生中隨機抽取兩名學生的取法共有 種,來自同一所中學的取法共有 ,由此能求出從30名學生中隨機抽取兩名學生來自同一所中學的概率. (Ⅲ)依題意得,X的可能取值為0,1,2,分別求出相應的概率,由此能求出X的分布列.
【考點精析】解答此題的關鍵在于理解分層抽樣的相關知識,掌握先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本,以及對離散型隨機變量及其分布列的理解,了解在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數(shù)學 來源: 題型:
【題目】一個容量為M的樣本數(shù)據(jù),其頻率分布表如下.
(1)計算a,b的值;
(2)畫出頻率分布直方圖;
(3)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計值.
頻率分布表
分組 | 頻數(shù) | 頻率 | 頻率/組距 |
(10,20] | 2 | 0.10 | 0.010 |
(20,30] | 3 | 0.15 | 0.015 |
(30,40] | 4 | 0.20 | 0.020 |
(40,50] | a | b | 0.025 |
(50,60] | 4 | 0.20 | 0.020 |
(60, 70] | 2 | 0.10 | 0.010 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移()個單位,可得到函數(shù)的圖象,且圖象關于原點對稱.(1)求的值.
(2)求 的最小值,并寫出的表達式.
(3)設t>0,關于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣x)的定義域為( )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標原點,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設函數(shù)f(α)=sinα( ),求f(α)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知⊙O的半徑是1,點C在直徑AB的延長線上,BC=1,點P是⊙O上半圓上的一個動點,以PC為邊作等邊三角形PCD,且點D與圓心分別在PC的兩側.
(1)若∠POB=θ,試將四邊形OPDC的面積y表示為關于θ的函數(shù);
(2)求四邊形OPDC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某公園有三條觀光大道AB,BC,AC圍成直角三角形,其中直角邊BC=200m,斜邊AB=400m,現(xiàn)有甲、乙、丙三位小朋友分別在AB,BC,AC大道上嬉戲,所在位置分別記為點D,E,F(xiàn).
(1)若甲、乙都以每分鐘100m的速度從點B出發(fā)在各自的大道上奔走,到大道的另一端時即停,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后,求此時甲乙兩人之間的距離;
(2)設∠CEF=θ,乙丙之間的距離是甲乙之間距離的2倍,且∠DEF= ,請將甲乙之間的距離y表示為θ的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com