已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為x-2y=0,則該雙曲線的離心率是( 。
A、
5
B、
2
C、
7
2
D、
5
2
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:利用雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為x-2y=0,可得a=2b,即可求出雙曲線的離心率.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為x-2y=0,
∴a=2b,
∴c=
5
b,
∴雙曲線的離心率是e=
c
a
=
5
2

故選:D.
點評:本題考查雙曲線的離心率的求法,是中檔題,解題時要認真審題,要熟練掌握雙曲線的簡單性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

直線
x=3+tcos230°
y=-1+tsin230°
(t為參數(shù))的傾斜角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量ξ服從正態(tài)分布N(1,σ2),且P(ξ<2)=0.6,則P(0<ξ<1)=( 。
A、0.4B、0.3
C、0.2D、0.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合U=R,集合M={x|x>1},P={x|x2>1},則下列關系正確的是( 。
A、M=P
B、(∁UM)∩P=∅
C、P⊆M
D、M⊆P

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線
x=1+t
y=a-t
(t為參數(shù))被圓
x=2+2cosα
y=2+2sinα
(α為參數(shù))所截的弦長為2
2
,則a的值為( 。
A、1或5B、-1或5
C、1或-5D、-1或-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α為銳角,且sin(α-
π
6
)=
1
3
,則sinα的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(a+x)4展開式中x3的系數(shù)等于8,則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線l1:x+(1+m)y=2-m,l2:2mx+4y=-16,m為何值時,l1與l2:(1)平行  (2)垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-2asin(2x+
π
6
)+2a+b,
(1)求f(x)的周期
(2)若a>0,求f(x)的最大值,并求出取得最大值時的x的集合.
(3)若x∈[
π
4
,
4
],是否存在常數(shù)a、b∈Q,使得f(x)的值域為{y|-3≤y≤
3
-1}?若存在,求出a、b的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案