15.命題“?x0∈N,x02+2x0≥3”的否定為(  )
A.?x0∈N,x02+2x0≤3B.?x∈N,x2+2x≤3C.?x0∈N,x02+2x0<3D.?x∈N,x2+2x<3

分析 直接利用特稱(chēng)命題的否定是求出命題寫(xiě)出結(jié)果即可.

解答 解:因?yàn)樘胤Q(chēng)命的否定是全稱(chēng)命題,所以,命題“?x0∈N,x02+2x0≥3”的否定為:?x∈N,x2+2x<3.故選:D.

點(diǎn)評(píng) 本題考查命題的否定,特稱(chēng)命題與全稱(chēng)命題的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若曲線C1:y=ax2(a>0)與曲線C2:y=ex在(0,+∞)上存在公共點(diǎn),則a的取值范圍為[$\frac{{e}^{2}}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,O是AD的中點(diǎn),PO⊥平面ABCD,△PAD是等邊三角形,AB=BC=$\frac{1}{2}$AD=1,cos∠ADB=$\frac{2\sqrt{5}}{5}$,AD∥BC,AD<BD.
(1)證明:平面POC⊥平面PAD;
(2)求直線PD與平面PAB所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,則實(shí)數(shù)m的取值范圍是(  )
A.2≤m≤3B.m≤3C.2<m≤3D.m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)在定義域[-1,1]內(nèi)是遞增的函數(shù),而且f(x-1)<f(2x-1),則x的取值范為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$函數(shù)g(x)=3-f(2-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在三棱錐A一BCD中,△ABD為正三角形,底面BCD為等腰直角三角形,且∠BCD=90°,CD=2,二面角A-BD-C的余弦值為$\frac{\sqrt{3}}{3}$.
(1)證明:AC⊥平面BCD;
(2)在線段BD上是否存在點(diǎn)P,使直線AB與平面ACP所成角的正弦值為$\frac{\sqrt{5}}{10}$?若存在,確定點(diǎn)P的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)f(x)=ex+$\frac{x}{x+1}$.
(1)求證:函數(shù)f(x)的唯一零點(diǎn)x0∈(-$\frac{1}{2}$,0);
(2)求證:對(duì)任意λ>0,存在μ<0,使得f(x)<0在(-1,λμ)上恒成立;
(3)設(shè)g(x)=f(x)-x=($\frac{1}{2}$)h(x)-1,當(dāng)x>0時(shí),比較g(x)與h(x)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知直線:$\frac{sinθ}{a}$x+$\frac{cosθ}$y=1(a,b為給定的正常數(shù),θ為參數(shù),θ∈[0,2π))構(gòu)成的集合為S,給出下列命題:
①當(dāng)θ=$\frac{π}{4}$時(shí),S中直線的斜率為$\frac{a}$;
②S中的所有直線可覆蓋整個(gè)坐標(biāo)平面.
③當(dāng)a=b時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到S中的所有直線的距離均相等;
其中正確的是③(寫(xiě)出所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案