在四棱錐A-BCDE中,BC∥DE,∠BCD=∠CDE=,DE=CD=BC,AB=AE=BC,AC=AD.(1)證明:平面ABE⊥平面BCDE;(2)求AC與平面BCDE所成的角的正弦值.

答案:
解析:

  解

  (1)分別取CD,BE的中點(diǎn)M,N,連AM,AN,∵AC=AD,AB=AE,∴CD⊥AM,BE⊥AN.∵∠BCD=∠CDE=,∴BCDE是直角梯形,∴CD⊥MN,于是CD⊥平面AMN,CD⊥AN,又由AN⊥BE,AN⊥CD,可得AN⊥平面BCDE,AN平面ABE,∴平面ABE⊥平面BCDE.

  (2)∵AN⊥平面BCDE,連NC,則∠ACN是AC與平面BCDE所成的角,設(shè)BC=4a,則DE=CD=2a,AB=AE=2a,BE=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,
CD
BE
=
1
3
,側(cè)面ABE⊥底面BCDE,∠BAE=90°.
(1)求證:平面ADE⊥平面ABE;
(2)過(guò)點(diǎn)D作面α∥平面ABC,分別于BE,AE交于點(diǎn)F,G,求△DFG的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在四棱錐 A-BCDE中,底面是直角梯形,其中 BC∥DE,∠BCD=90°,且 DE=CD=
1
2
BC,又AB=AE=
1
2
BC,AC=AD,
求證:面ABE⊥面BCD.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•石家莊二模)如圖,在四棱錐A-BCDE中,底面BCDE為直角梯形,且BE∥CD,CD⊥BC.側(cè)面ABC⊥底面BCDE,F(xiàn)為AC的中點(diǎn),BC=BE=4CD=2,AB=AC.
(Ⅰ)求證:FD⊥CE;
(Ⅱ)若規(guī)定正視方向與平面ABC 垂直,且四棱錐A-BCDE的側(cè)(左)視圖的面積為
3
,求點(diǎn)B到平面ACE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省揚(yáng)州中學(xué)2012屆高三4月雙周練習(xí)(一)數(shù)學(xué)試題 題型:044

如圖,在四棱錐A-BCDE中,底面BCDE是直角梯形,∠BED=90°,BE∥CD,AB=6,BC=5,,側(cè)面ABE⊥底面BCDE,∠BAE=90°.

(1)求證:平面ADE⊥平面ABE;

(2)過(guò)點(diǎn)D作面α∥平面ABC,分別于BE,AE交于點(diǎn)F,G,求△DFG的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案