【題目】已知函數(shù)(其中).

(1)當時,求函數(shù)點處的切線方程;

(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)的取值范圍;

(3)求證:對于任意大于的正整數(shù),都有.

【答案】(1);(2);(3)證明見解析.

【解析】試題分析】(1),求出切點的坐標和在切點處的斜率,利用點斜式寫出切線方程.(2)令導函數(shù)大于零,得到,,,所以.(3)時,,利用導數(shù)求得函數(shù)在上遞增,令,得到,利用放縮法和累加法可證得原不等式成立.

試題解析】

(1)∵,∴),

,∵,∴在點處的切線方程為.

(2)∵,∴),

上為增函數(shù),∴對任意恒成立.

對任意恒成立,

對任意恒成立.∵時,

,即所求正實數(shù)的取值范圍是.

(3)當時,

時,,故上是增函數(shù).

時,令,則當時,,所以

,所以

所以

所以即對于任意大于 則正整數(shù) ,都有

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的值域為_________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1,求函數(shù)的極值;

2 時,判斷函數(shù)在區(qū)間上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,函數(shù)被稱為狄利克雷函數(shù),其中為實數(shù)集,為有理數(shù)集,則關于函數(shù)有如下四個命題:

②函數(shù)是偶函數(shù);

③任取一個不為零的有理數(shù)對任意的恒成立;

④存在三個點,使得為等邊三角形.

其中真命題的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足 (),數(shù)列滿足 (),

1證明數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;

2,求數(shù)列的前項和;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了反映國民經濟各行業(yè)對倉儲物流業(yè)務的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經濟運行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,若的充分條件.

1)求證:函數(shù)的圖像總在直線的下方;

2)是否存在實數(shù),使得不等式對一切實數(shù)恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學解答一道三角函數(shù)題:已知函數(shù),且

(Ⅰ)求的值;

(Ⅱ)求函數(shù)在區(qū)間上的最大值及相應x的值.

該同學解答過程如下:

解答:(Ⅰ)因為,所以.因為,

所以

(Ⅱ)因為,所以.令,則

畫出函數(shù)上的圖象,

由圖象可知,當,即時,函數(shù)的最大值為

下表列出了某些數(shù)學知識:

任意角的概念

任意角的正弦、余弦、正切的定義

弧度制的概念

的正弦、余弦、正切的誘導公式

弧度與角度的互化

函數(shù),,的圖象

三角函數(shù)的周期性

正弦函數(shù)、余弦函數(shù)在區(qū)間上的性質

同角三角函數(shù)的基本關系式

正切函數(shù)在區(qū)間上的性質

兩角差的余弦公式

函數(shù)的實際意義

兩角差的正弦、正切公式

參數(shù)A,,對函數(shù)圖象變化的影響

兩角和的正弦、余弦、正切公式

二倍角的正弦、余弦、正切公式

請寫出該同學在解答過程中用到了此表中的哪些數(shù)學知識.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結論.

查看答案和解析>>

同步練習冊答案