(本題滿(mǎn)分為12分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為
(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

(I)(II)

解析試題分析:

解:(I),,,
所以,所求橢圓方程為.   (4分)
(II)設(shè)
過(guò)A,B的直線方程為
由M分有向線段所成的比為2,得,(6分)
則由 得(8分)
,  消 x2得 
解得,                                         (11分)
所以, .                                            (12分)
考點(diǎn):橢圓的方程;直線的方程。
點(diǎn)評(píng):求曲線的方程是一個(gè)重要的考點(diǎn),對(duì)于題目涉及曲線的交點(diǎn),常用到根與系數(shù)的關(guān)系式。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)為定點(diǎn),且滿(mǎn)足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為的直線與曲線交于兩點(diǎn),試判斷在軸上是否存在點(diǎn),使得成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)
已知橢圓的右焦點(diǎn)為F,離心率,橢圓C上的點(diǎn)到F的距離的最大值為,直線l過(guò)點(diǎn)F與橢圓C交于不同的兩點(diǎn)A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
已知橢圓的右焦點(diǎn),且,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線的距離為,過(guò)原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分12分)如圖,橢圓C方程為 (),點(diǎn)為橢圓C的左、右頂點(diǎn)。

(1)若橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),且滿(mǎn)足,求證:直線過(guò)定點(diǎn),并求出該點(diǎn)的坐標(biāo)。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸長(zhǎng)為2,離心率e=,過(guò)右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿(mǎn)足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過(guò)橢圓C1的右焦點(diǎn).
(Ⅰ)當(dāng)AB⊥軸時(shí),求、的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點(diǎn)恰在直線AB上?若存在,求出符合條件的、的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)雙曲線的方程為,、為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,,垂足分別為,交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)、的離心率分別為、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案