剖析:本題為條件恒等式的證明,要從條件與要證的結(jié)論之間的聯(lián)系入手,將結(jié)論中的sin2B、sin2C都統(tǒng)一成角A的三角函數(shù).
證法一:sin2A+sin2B+sin2C=sin2A+[1-(cosθsinA)2]+[1-(sinθsinA)2]=sin2A+1-cos2θsin2A+1-sin2θsin2A
=sin2A(1-sin2θ)+1-cos2θsin2A+1
=sin2Acos2θ-sin2Acos2θ+2
=2.
∴原式成立.
證法二:由已知式可得
cosθ=,sinθ=.
平方相加得cos2B+cos2C=sin2A
+=sin2A
cos2B+cos2C=2sin2A-2.
1-2sin2B+1-2sin2C=2sin2A-2,
∴sin2A+sin2B+sin2C=2.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
AB |
AC |
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):4.10 三角函數(shù)的應(yīng)用(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com