20.定義在R上的奇函數(shù)f(x),對(duì)任意a,b∈R,a+b≠0,都有$\frac{f(a)+f(b)}{a+b}$>0.
(1)試證明f(x)為R上的增函數(shù);
(2)若不等式f(kx2-6)+f(k-2x)<0在k∈[-1,1]上恒成立,求x的取值范圍.

分析 (1)運(yùn)用奇函數(shù)的定義和單調(diào)性的定義,即可得證;
(2)由題意可得不等式f(kx2-6)+f(k-2x)<0即為f(kx2-6)<-f(k-2x)=f(2x-k),由f(x)在R上遞增,可得kx2-6<2x-k,構(gòu)造函數(shù)g(k)=k(x2+1)-6-2x,由一次函數(shù)的單調(diào)性,可得g(-1)<0,g(1)<0,解之即可得到所求范圍.

解答 解:(1)證明:定義在R上的奇函數(shù)f(x),可得f(-x)=-f(x),
可令a=x1,b=-x2,即有$\frac{f({x}_{1})+f(-{x}_{2})}{{x}_{1}-{x}_{2}}$>0,
即$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,當(dāng)x1<x2時(shí),f(x1)<f(x2),
則f(x)在R上遞增;
(2)不等式f(kx2-6)+f(k-2x)<0即為
f(kx2-6)<-f(k-2x)=f(2x-k),
由f(x)在R上遞增,可得kx2-6<2x-k,
即k(x2+1)-6-2x<0,設(shè)g(k)=k(x2+1)-6-2x,
由k∈[-1,1]上恒成立,可得
$\left\{\begin{array}{l}{g(-1)<0}\\{g(1)<0}\end{array}\right.$即為$\left\{\begin{array}{l}{-{x}^{2}-2x-7<0}\\{{x}^{2}-2x-5<0}\end{array}\right.$
即$\left\{\begin{array}{l}{x∈R}\\{1-\sqrt{6}<x<1+\sqrt{6}}\end{array}\right.$,解得1-$\sqrt{6}$<x<1+$\sqrt{6}$.
則x的范圍是(1-$\sqrt{6}$,1+$\sqrt{6}$).

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性的判斷和證明,以及運(yùn)用:解不等式,考查不等式恒成立問題的解法,注意主元思想的運(yùn)用,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)y=g(x)對(duì)任意x滿足g(x)=f(4-x),證明當(dāng)x>2時(shí),f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),證明x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=3x+k•3-x為奇函數(shù).
(1)求實(shí)數(shù)k的值;
(2)若關(guān)于x的不等式f(9${\;}^{a{x}^{2}-2x}$-1)+f(1-3ax-2)<0只有一個(gè)整數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正方體ABCD-A1B1C1D1(如圖),A1P=A1Q=A1R(P,Q,R在正方體的棱上),求證:平面PQR∥平面C1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC三點(diǎn)A(-3,4),B(1,2),C(5,-2).求該三角形三條中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,D,E分別是BC,AC的中點(diǎn).M為AD與BE的交點(diǎn),求證:點(diǎn)M分別將線段AD,BE分成2:1的兩部分.(要求用向量方法.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.有一個(gè)正六棱錐(底面為正六邊形,側(cè)面為全等的等腰三角形的棱錐),底面邊長(zhǎng)為3cm,高為3cm,畫出這個(gè)正六棱錐的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C所對(duì)的邊為a,b,c,已知a=2c,且A-C=$\frac{π}{2}$.
(1)求cosC的值;
(2)當(dāng)b=1時(shí),求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={x|x=2t2+4t+1},B={y|y=-3x2+6x+10},則A∩B=[-1,13].

查看答案和解析>>

同步練習(xí)冊(cè)答案