分析 (I)直接利用三角函數(shù)的定義求出正弦函數(shù)以及余弦函數(shù)值,即可cosα+sinα的值;
(II)設(shè)Pcos2θ,sin2θ,點(diǎn)Q滿足$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$.表示出表示|$\overrightarrow{OQ}$|,然后通過三角函數(shù)的值域求|$\overrightarrow{OQ}$|的最大值.
解答 (本小題13分)
解:(Ⅰ)點(diǎn)A是單位圓與x軸正半軸的交點(diǎn),B(-$\frac{3}{5}$,$\frac{4}{5}$).
可得sinα=$\frac{4}{5}$,cosα=$-\frac{3}{5}$,∴cosα+sinα=$-\frac{3}{5}+\frac{4}{5}=\frac{1}{5}$.
(Ⅱ)因?yàn)镻(cos2θ,sin2θ),A(1,0)所以$\overrightarrow{OQ}$=$\overrightarrow{OA}+\overrightarrow{OP}$=(1+cos2θ,sin2θ),
所以$\left|\overrightarrow{OQ}\right|$=$\sqrt{(1+cos2θ)^{2}+{sin}^{2}2θ}$=$\sqrt{2+2cos2θ}$=2|cosθ|,因?yàn)?\frac{π}{6}≤θ≤\frac{π}{2}$,
所以$\left|\overrightarrow{OQ}\right|$=2|cosθ|∈$[0,\sqrt{3}]$,
|$\overrightarrow{OQ}$|的最大值$\sqrt{3}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的定義的應(yīng)用,三角函數(shù)最值的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 15 | C. | 18 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | {1,2} | C. | {-1,0,1} | D. | {x|x≤1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com