設(shè)經(jīng)過定點M(a,0)的直線與拋物線y2=2px相交于P,Q兩點,若為常數(shù),則a的值為

[  ]
A.

p

B.

2p

C.

D.

-2p

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(0,2),
b
=(1,0),過定點A(0,-2),以
a
b
方向向量的直線與經(jīng)過點B(0,2),以向量
b
-2λ
a
為方向向量的直線相交于點P,其中λ∈R,
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)設(shè)過E(1,0)的直線l與C交于兩個不同點M、N,求
EM
EN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•焦作一模)在平面直角坐標(biāo)系xoy中,橢圓E:
x2
a2
+
y2
b2
=1
(a>0,b>0)經(jīng)過點A(
6
2
,
2
),且點F(0,-1)為其一個焦點.   
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E與y軸的兩個交點為A1,A2,不在y軸上的動點P在直線y=b2上運動,直線PA1,PA2分別與橢圓E交于點M,N,證明:直線MN通過一個定點,且△FMN的周長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且經(jīng)過點M(-2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C相交于A(x1,y1),B(x2,y2)兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設(shè)yP,yQ分別為點P,Q的縱坐標(biāo),且
1
y1
+
1
y2
=
1
yP
+
1
yQ
.求證:直線l過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省臨清三中2011-2012學(xué)年高二12月月考數(shù)學(xué)試題 題型:013

設(shè)經(jīng)過定點M(a,0)的直線與拋物線y2=2px相交于P,Q兩點,若為常數(shù),則a的值為

[  ]
A.

p

B.

2p

C.

D.

-2p

查看答案和解析>>

同步練習(xí)冊答案