(13分)
在直角坐標(biāo)系中,點(diǎn)M到點(diǎn)的距離之和是4,點(diǎn)M的軌跡是C,直線與軌跡C交于不同的兩點(diǎn)P和Q.
(I)求軌跡C的方程;
(II)是否存在常數(shù)?若存在,求出k的值;若不存在,請(qǐng)說明理由.
(1)的距離之和是4,
的軌跡C是長軸為4,焦點(diǎn)在x軸上焦距為的橢圓,


 
其方程為               …………4分

  (2)將,代入曲線C的方程,
整理得 ①
…………6分
設(shè)由方程①,得
 ②                 …………8分
          ③

                                    …………10分
將②、③代入上式,
解得                                       …………12分
又因k的取值應(yīng)滿足
(*),
代入(*)式知符合題意                     …………13分
略       
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知定點(diǎn),動(dòng)點(diǎn)滿足,
(1)求動(dòng)點(diǎn)的軌跡方程,并說明方程表示什么曲線;
(2)當(dāng)時(shí),求的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標(biāo)系中,已知,,),,O為坐標(biāo)原點(diǎn),若實(shí)數(shù)使向量,滿足:,設(shè)點(diǎn)P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當(dāng)時(shí),過點(diǎn)且斜率為1的直線與相交的另一個(gè)交點(diǎn)為,能否在直線上找到一點(diǎn),恰使為正三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13 分)
已知橢圓的右焦點(diǎn)F 與拋物線y2 =" 4x" 的焦點(diǎn)重合,短軸長為2.橢圓的右準(zhǔn)線l與x軸交于E,過右焦點(diǎn)F 的直線與橢圓相交于A、B 兩點(diǎn),點(diǎn)C 在右準(zhǔn)線l上,BC//x 軸.
(1)求橢圓的標(biāo)準(zhǔn)方程,并指出其離心率;
(2)求證:線段EF被直線AC 平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,點(diǎn)A在直線上移動(dòng),等腰△OPA的頂角∠OPA為120°(O,P,A按順時(shí)針方向排列),求點(diǎn)P的軌跡方程
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知兩定點(diǎn),若點(diǎn)P滿足
(1)求點(diǎn)P的軌跡及其方程。
(2)直線與點(diǎn)P的軌跡交于A、B兩點(diǎn),若,且曲線E上存在點(diǎn)C,使,求實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)在區(qū)間[0,1]上給定曲線,試在此區(qū)間內(nèi)確定t的值,使圖中的陰影部分面積s1與s2之和最小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=x+b與曲線有公共點(diǎn),則b的取值范圍是
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖是高爾頓板的改造裝置,當(dāng)小球從自由下落時(shí),進(jìn)入槽口處的概率為  
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案