分析 (1)分段作出函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$ 的圖象即可,
(2)先求f(-2)=(-2)2+1=5,從而可求得f[f(-2)]=f(5)=10-3=7;
(3)由(2)知a=-2是方程f(a)=5的解,再求a>1時(shí)的即可.
解答 解:(1)作函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$ 的圖象如下,
(2)f(-2)=(-2)2+1=5,
f[f(-2)]=f(5)=10-3=7;
(3)由(2)知,當(dāng)a≤1時(shí),a=-2是方程f(a)=5的解,
當(dāng)a>1時(shí),f(a)=2a-3=5,解得,a=4;
故a=-2或a=4.
點(diǎn)評(píng) 本題考查了分段函數(shù)的應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l與C相交 | B. | l與C相切 | ||
C. | l與C相離 | D. | 以上三個(gè)選項(xiàng)均有 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com