17.已知函數(shù)f(x)=ax2+bx+1(a,b為常數(shù))
(1)若f(-1)=0,且f(x)最小值為0,求f(x)的解析式;
(2)在(1)的條件下,若g(x)=f(x)-kx在[-2,2]上單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{-f(x),x<0}\end{array}\right.$,已知a>0,且f(x )為偶函數(shù),當(dāng)mn<0,m+n>0時(shí),證明:F(m)+F(n)>0.

分析 (1)利用f(-1)=0和函數(shù)f(x)的值域?yàn)閇0,+∞),建立方程關(guān)系,即可求出a,b,從而確定F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),利用g(x)=f(x)-kx的單調(diào)區(qū)間與對(duì)稱軸之間的關(guān)系建立不等式進(jìn)行求解即可.
(3)利用mn<0,m+n>0,a>0,且f(x)是偶函數(shù),得到b=0,然后判斷F(m)+F(n)的取值.

解答 解:(1)∵f(-1)=0,∴a-b+1=0,①
∵函數(shù)f(x)的值域?yàn)閇0,+∞),
∴a>0且判別式△=0,即b2-4a=0,②
由①②得a=1,b=2.
∴f(x)=ax2+bx+1=x2+2x+1.
∴F(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,x>0}\\{{-x}^{2}-2x-1,x<0}\end{array}\right.$;
(2)g(x)=f(x)-kx=x2+(2-k)x+1,
函數(shù)的對(duì)稱軸為x=-$\frac{2-k}{2}$=$\frac{k-2}{2}$,
要使函數(shù)g(x)=f(x)-kx,在x∈[-2,2]上是單調(diào)函數(shù),
則區(qū)間[-2,2]必在對(duì)稱軸的一側(cè),
即$\frac{k-2}{2}$≥2或$\frac{k-2}{2}$≤-2,
解得k≥6或k≤-2.
即實(shí)數(shù)k的取值范圍是k≥6或k≤-2.
(3)∵f(x)是偶函數(shù),∴f(-x)=f(x),
即ax2-bx+1=ax2+bx+1,
∴2bx=0,解得b=0.
∴f(x)=ax2+1.
∴F(x)=$\left\{\begin{array}{l}{{ax}^{2}+1x>0}\\{-{ax}^{2}-1,x<0}\end{array}\right.$,
∵mn<0,m+n>0,a>0,
不妨設(shè)m>n,則m>0,n<0,
∴F(m)+F(n)=am2+1-an2-1=a(m2-n2)=a(m-n)(m+n),
∵m+n>0,a>0,m-n>0,
∴F(m)+F(n)=a(m-n)(m+n)>0.

點(diǎn)評(píng) 本題主要考查二次函數(shù)的圖象和性質(zhì),以及二次函數(shù)單調(diào)性與對(duì)稱軸之間的關(guān)系.要求熟練掌握二次函數(shù)的相關(guān)知識(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知分段函數(shù)f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{{x}^{2}-2x,0<x≤4}\\{-x+2,x>4}\end{array}\right.$,若f(a)=-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A={x|x=m+n$\sqrt{2}$,m,n∈z}.
(1)設(shè)x1=$\frac{1}{3}$-4$\sqrt{2}$,x2=$\sqrt{9-4\sqrt{2}}$,x3=(1-3$\sqrt{2}$)2,試判斷x1,x2,x3與A之間的關(guān)系;
 (2)任取x1,x2,∈A,試判斷x1+x2,x1x2與A之間的關(guān)系;
(3)能否找到x0∈A.使$\frac{1}{{x}_{0}}$∈A且x0≠±1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}是等差數(shù)列,a2=6,a5=18;數(shù)列{bn}的前n項(xiàng)和是Tn,且Tn+$\frac{1}{2}$bn=1,.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知等比數(shù)列{an}中,a3=16,且a1a2…a10=265,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)f(x)=|x-1|-|x+1|,g(x)=ax2+bx+c(a≠0).
(I)求不等式|f(x)|≤2的解集;
(Ⅱ)若不等式f(x)≥g(x)的解集與函數(shù)f(x)的值域相同,求x軸被曲線y=g(x)截得的弦的長(zhǎng)度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1(x≤1)}\\{2x-3(x>1)}\\{\;}\end{array}\right.$
(1)做出函數(shù)的圖象;
(2)求f[f(-2)];
(3)若f(a)=5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={1,3},B={2,4},ai∈A,bi∈B,(i=1,2)且a1≠a2,b1≠b2,定義運(yùn)算(a1,b1)⊕(a2,b2)=a1b2-a2b1,則所有運(yùn)算結(jié)果所構(gòu)成的集合為( 。
A.{-2,-10}B.{2,10}C.{-2,-10,2,14}D.{-2,-10,2,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.函數(shù)f(x)=(a-1)x2+2ax+3為偶函數(shù),那么f(x)在(-5,-2)上是增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案