分析 (1)利用f(-1)=0和函數(shù)f(x)的值域?yàn)閇0,+∞),建立方程關(guān)系,即可求出a,b,從而確定F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),利用g(x)=f(x)-kx的單調(diào)區(qū)間與對(duì)稱軸之間的關(guān)系建立不等式進(jìn)行求解即可.
(3)利用mn<0,m+n>0,a>0,且f(x)是偶函數(shù),得到b=0,然后判斷F(m)+F(n)的取值.
解答 解:(1)∵f(-1)=0,∴a-b+1=0,①
∵函數(shù)f(x)的值域?yàn)閇0,+∞),
∴a>0且判別式△=0,即b2-4a=0,②
由①②得a=1,b=2.
∴f(x)=ax2+bx+1=x2+2x+1.
∴F(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+1,x>0}\\{{-x}^{2}-2x-1,x<0}\end{array}\right.$;
(2)g(x)=f(x)-kx=x2+(2-k)x+1,
函數(shù)的對(duì)稱軸為x=-$\frac{2-k}{2}$=$\frac{k-2}{2}$,
要使函數(shù)g(x)=f(x)-kx,在x∈[-2,2]上是單調(diào)函數(shù),
則區(qū)間[-2,2]必在對(duì)稱軸的一側(cè),
即$\frac{k-2}{2}$≥2或$\frac{k-2}{2}$≤-2,
解得k≥6或k≤-2.
即實(shí)數(shù)k的取值范圍是k≥6或k≤-2.
(3)∵f(x)是偶函數(shù),∴f(-x)=f(x),
即ax2-bx+1=ax2+bx+1,
∴2bx=0,解得b=0.
∴f(x)=ax2+1.
∴F(x)=$\left\{\begin{array}{l}{{ax}^{2}+1x>0}\\{-{ax}^{2}-1,x<0}\end{array}\right.$,
∵mn<0,m+n>0,a>0,
不妨設(shè)m>n,則m>0,n<0,
∴F(m)+F(n)=am2+1-an2-1=a(m2-n2)=a(m-n)(m+n),
∵m+n>0,a>0,m-n>0,
∴F(m)+F(n)=a(m-n)(m+n)>0.
點(diǎn)評(píng) 本題主要考查二次函數(shù)的圖象和性質(zhì),以及二次函數(shù)單調(diào)性與對(duì)稱軸之間的關(guān)系.要求熟練掌握二次函數(shù)的相關(guān)知識(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-2,-10} | B. | {2,10} | C. | {-2,-10,2,14} | D. | {-2,-10,2,10} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com