A. | $[{-\frac{1}{2}-6\sqrt{2},-\frac{1}{2}+6\sqrt{2}}]$ | B. | [-6,6] | C. | $[{-\frac{1}{2}-3\sqrt{2},-\frac{1}{2}+3\sqrt{2}}]$ | D. | [-4,4] |
分析 運用向量的三角形法則,結(jié)合向量的數(shù)量積的定義,可得$\overrightarrow{ME}•\overrightarrow{OF}$=-$\frac{1}{2}$-$\overrightarrow{ME}$•$\overrightarrow{MO}$,再由向量的數(shù)量積定義及余弦函數(shù)的值域即可得到$\overrightarrow{ME}•\overrightarrow{OF}$(O為坐標原點)的取值范圍.
解答 解:由題意可得$\overrightarrow{OF}$=$\overrightarrow{OM}$+$\overrightarrow{MF}$,
∴$\overrightarrow{ME}•\overrightarrow{OF}$=$\overrightarrow{ME}$•($\overrightarrow{OM}$+$\overrightarrow{MF}$)=$\overrightarrow{ME}$•$\overrightarrow{OM}$+$\overrightarrow{ME}$•$\overrightarrow{MF}$=$\overrightarrow{ME}$•$\overrightarrow{OM}$+|$\overrightarrow{ME}$||$\overrightarrow{MF}$|cos120°
=-$\frac{1}{2}$-$\overrightarrow{ME}$•$\overrightarrow{MO}$,
由于圓M:(x-3)2+(y-3)2=4,則圓心M(3,3),半徑r=2,
則OM=3$\sqrt{2}$,ME=1,
可得$\overrightarrow{ME}$•$\overrightarrow{MO}$=1×3$\sqrt{2}$cos<$\overrightarrow{ME}$,$\overrightarrow{MO}$>∈[-3$\sqrt{2}$,3$\sqrt{2}$],
故$\overrightarrow{ME}•\overrightarrow{OF}$(O為坐標原點)的取值范圍是[-$\frac{1}{2}$-3$\sqrt{2}$,-$\frac{1}{2}$+3$\sqrt{2}$].
故選C.
點評 本題主要考查兩個向量的數(shù)量積的定義,兩個向量的加減法的法則,以及其幾何意義,余弦函數(shù)的值域,
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
用電量(度) | (0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
戶數(shù) | 5 | 15 | 10 | 15 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3] | B. | (-∞,-4] | C. | (-∞,6] | D. | [0,6] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com