【題目】在△ABC中,若 = ,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形

【答案】D
【解析】解:∵ = ,
∴可得:(a2+b2)sin(A﹣B)=(a2﹣b2)sin C,
∵2Rsin(A﹣B)=2R(sinAcosB﹣cosAsinB)=2RsinAcosB﹣2RsinBcosA=a ﹣b = ,
∴已知等式變形得:(a2+b2 =(a2﹣b2
∴a2=b2或a2+b2=c2 ,
則△ABC是等腰三角形或直角三角形.
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=f(x),若在其定義域內(nèi)存在x0 , 使得x0f(x0)=1成立,則稱x0為函數(shù)f(x)的“反比點(diǎn)”.下列函數(shù)中具有“反比點(diǎn)”的是
①f(x)=﹣2x+2; ②f(x)=sinx,x∈[0,2π];
③f(x)=x+ , x∈(0,+∞);④f(x)=ex; ⑤f(x)=﹣2lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓為參數(shù))上的每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到曲線

(1)求出的普通方程;

(2)設(shè)直線 的交點(diǎn)為, ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求過線段的中點(diǎn)且與垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】霧霾天氣對城市環(huán)境造成很大影響,按照國家環(huán)保部發(fā)布的標(biāo)準(zhǔn):居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過35微克/立方米.某市環(huán)保部門加強(qiáng)了對空氣質(zhì)量的監(jiān)測,抽取某居民區(qū)監(jiān)測點(diǎn)的20天PM2.5的24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),制成莖葉圖,如圖:

(Ⅰ)完成如下頻率分布表,并在所給的坐標(biāo)系中畫出的頻率分布直方圖;

(Ⅱ)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語文、數(shù)學(xué)、外語,每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學(xué)生對物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間[﹣1,1]上任取兩個(gè)數(shù)a,b,在下列條件時(shí),分別求不等式x2+2ax+b2≥0恒成立時(shí)的概率:
(1)當(dāng)a,b均為整數(shù)時(shí);
(2)當(dāng)a,b均為實(shí)數(shù)時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位招聘職工分為筆試和面試兩個(gè)環(huán)節(jié),將筆試成績合格(滿分100分,及格60分,精確到個(gè)位數(shù))的應(yīng)聘者進(jìn)行統(tǒng)計(jì),得到如下的頻率分布表:

分組

頻數(shù)

頻率

[60,70]

0.16

(70,80]

22

(80,90]

14

0.28

(90,100]

合計(jì)

50

1

(Ⅰ)確定表中的值(直接寫出結(jié)果,不必寫過程)

(Ⅱ)面試規(guī)定,筆試成績在80分(不含80分)以上者可以進(jìn)入面試環(huán)節(jié),面試時(shí)又要分兩關(guān),首先面試官依次提出4個(gè)問題供選手回答,并規(guī)定,答對2道題就終止回答,通過第一關(guān)可以進(jìn)入下一關(guān),如果前三題均沒有答對,則不再回答第四題并且不能進(jìn)入下一關(guān),假定某選手獲得面試資格的概率與答對每道題的概率相等.

求該選手答完3道題而通過第一關(guān)的概率;

記該選手在面試第一關(guān)中的答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為: =1(a>0),其焦點(diǎn)在x軸上,離心率e=
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)P(x0 , y0)滿足 ,其中O為坐標(biāo)原點(diǎn),M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為﹣ ,求證:x02+2y02為定值.
(3)在(2)的條件下,問:是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補(bǔ)出完整函數(shù)f(x)的圖象,并根據(jù)圖象寫出函數(shù)f(x)的增區(qū)間;

(2)寫出函數(shù)f(x)的解析式和值域.

查看答案和解析>>

同步練習(xí)冊答案