7.已知cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,則$\frac{cos2α}{sinα+cosα}$=$\frac{1}{2}$.

分析 法一、由已知求出sin($α+\frac{π}{4}$)=$±\frac{\sqrt{14}}{4}$.然后利用誘導(dǎo)公式及二倍角的正弦求得分子,利用兩角和的正弦求得分母,則答案可求;
法二、把要求值的式子分子展開二倍角余弦,約分后利用兩角和的余弦化積,則答案可求.

解答 解:∵cos(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{4}$,
∴sin($α+\frac{π}{4}$)=$±\frac{\sqrt{14}}{4}$.
當(dāng)sin($α+\frac{π}{4}$)=-$\frac{\sqrt{14}}{4}$時(shí),
∴cos2α=sin(2α+$\frac{π}{2}$)=2sin($α+\frac{π}{4}$)cos($α+\frac{π}{4}$)=2×$(-\frac{\sqrt{14}}{4})×\frac{\sqrt{2}}{4}$=$-\frac{\sqrt{7}}{4}$,
sinα+cosα=$\sqrt{2}sin(α+\frac{π}{4})$=$\sqrt{2}×(-\frac{\sqrt{14}}{4})$=$-\frac{\sqrt{7}}{2}$,
∴$\frac{cos2α}{sinα+cosα}$=$\frac{-\frac{\sqrt{7}}{4}}{-\frac{\sqrt{7}}{2}}=\frac{1}{2}$;
當(dāng)sin($α+\frac{π}{4}$)=$\frac{\sqrt{14}}{4}$時(shí),
∴cos2α=sin(2α+$\frac{π}{2}$)=2sin($α+\frac{π}{4}$)cos($α+\frac{π}{4}$)=2×$\frac{\sqrt{14}}{4}×\frac{\sqrt{2}}{4}=\frac{\sqrt{7}}{4}$,
sinα+cosα=$\sqrt{2}sin(α+\frac{π}{4})$=$\sqrt{2}×\frac{\sqrt{14}}{4}=\frac{\sqrt{7}}{2}$,
∴$\frac{cos2α}{sinα+cosα}$=$\frac{\frac{\sqrt{7}}{4}}{\frac{\sqrt{7}}{2}}=\frac{1}{2}$.
綜上,$\frac{cos2α}{sinα+cosα}$=$\frac{1}{2}$;
法二、$\frac{cos2α}{sinα+cosα}$=$\frac{co{s}^{2}α-si{n}^{2}α}{cosα+sinα}$=$\frac{(cosα+sinα)(cosα-sinα)}{cosα+sinα}$
=cosα-sinα=$\sqrt{2}cos(α+\frac{π}{4})$=$\sqrt{2}×\frac{\sqrt{2}}{4}=\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查了學(xué)生的靈活變形能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,已知$\overrightarrow{AB}•\overrightarrow{AC}=2\overrightarrow{AB}•\overrightarrow{BC}$若cosA=$\frac{4}{5}$,則tanB=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.一個(gè)等腰直角三角形在一個(gè)平面內(nèi)的正投影可能是①②③④.(把你認(rèn)為正確的選項(xiàng)的序號(hào)填在橫線上)
①等腰直角三角形;
②直角非等腰三角形;
③鈍角三角形;
④銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知A={x||x|<5,x∈Z},B={x|-2x≥-6,x∈N},則A∩B={0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若b2=a2+ac+c2,則角B=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=cosx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再將所得圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度得曲線C,則曲線C對(duì)應(yīng)的函數(shù)解析式為y=cos($\frac{x}{2}$-$\frac{π}{8}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.解釋下列概率的含義:
(1)某廠生產(chǎn)產(chǎn)品合格的概率為0.9;
(2)一次抽獎(jiǎng)活動(dòng)中,中獎(jiǎng)的概率為0.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)P是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1上一點(diǎn),F(xiàn)1,F(xiàn)2是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),若|PF1|•|PF2|=8,則|OP|=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{|x+1|-3}$的定義域是{x|x≥2或x≤-4}.

查看答案和解析>>

同步練習(xí)冊(cè)答案