【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù),).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的圾坐標(biāo)方,且直線l與曲線C相交于A,B兩點(diǎn).
(1)求曲線C的普通方程和l的直角坐標(biāo)方程;
(2)若,點(diǎn)滿足,求此時r的值.
【答案】(1),(2)
【解析】
(1)曲線C的普通方程為, 將,代入直線l的極坐標(biāo)方程中,可得到l的直角坐標(biāo)方程.
(2)寫出l的參數(shù)方程可設(shè)為(t為參數(shù)),將l的參數(shù)方程與曲線C的普通方程聯(lián)立,得,設(shè)點(diǎn)A、B對應(yīng)的參數(shù)分別為、,則由韋達(dá)定理得,代入可得所求值.
(1)曲線C的普通方程為,
將,代入直線l的極坐標(biāo)方程中,得到l的直角坐標(biāo)方程為.
(2)點(diǎn)在直線l上,則l的參數(shù)方程可設(shè)為(t為參數(shù)),
將l的參數(shù)方程與曲線C的普通方程聯(lián)立,得,,
設(shè)點(diǎn)A、B對應(yīng)的參數(shù)分別為、,則由韋達(dá)定理得,且當(dāng)時,.
所以,得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重時會危及生命.隨著疫情的發(fā)展,自2020年2月5日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從2月12日開艙至3月8日閉倉,累計收治輕癥患者1056人.據(jù)部分統(tǒng)計該方艙醫(yī)院從2月26日至3月2日輕癥患者治愈出倉人數(shù)的頻數(shù)表與散點(diǎn)圖如下:
日期 | 2.26 | 2.27 | 2.28 | 2.29 | 3.1 | 3.2 |
序號 | 1 | 2 | 3 | 4 | 5 | 6 |
出倉人數(shù) | 3 | 8 | 17 | 31 | 68 | 168 |
根據(jù)散點(diǎn)圖和表中數(shù)據(jù),某研究人員對出倉人數(shù)與日期序號進(jìn)行了擬合分析.從散點(diǎn)圖觀察可得,研究人員分別用兩種函數(shù)①②分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為.
(1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類函數(shù),哪一類函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿足,參考數(shù)據(jù)表中)
(2)①根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點(diǎn)后三位)
②3月3日實(shí)際總出倉人數(shù)為216人,按①中的回歸模型計算,差距有多少人?
(附:對于一組數(shù)據(jù),其回歸直線為
相關(guān)系數(shù)
參考數(shù)據(jù):
|
|
| ||||||
3.5 | 49.17 | 15.17 | 3.13 | 894.83 | 19666.83 | 10.55 | 13.56 | 3957083 |
,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1),求函數(shù)的單調(diào)區(qū)間:
(2)對于任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.某大學(xué)為了解在校本科生對參加某項(xiàng)社會實(shí)踐活動的意向,擬采用分層抽樣的方法從該校四個年級的本科生中抽取一個容量為300的樣本進(jìn)行調(diào)查.已知該校一、二、三、四年級本科生人數(shù)之比為6:5:5:4,則應(yīng)從一年級中抽取90名學(xué)生
B.10件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率為
C.已知變量x與y正相關(guān),且由觀測數(shù)據(jù)算得=3,=3.5,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是=0.4x+2.3
D.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,至少有一個黑球與至少有一個紅球是兩個互斥而不對立的事件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右頂點(diǎn)分別是雙曲線:的左、右焦點(diǎn),且與相交于點(diǎn)().
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線:與橢圓交于A,B兩點(diǎn),以線段AB為直徑的圓是否恒過定點(diǎn)?若恒過定點(diǎn),求出該定點(diǎn);若不恒過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地貫徹黨的“五育并舉”的教育方針,某市要對全市中小學(xué)生“體能達(dá)標(biāo)”情況進(jìn)行了解,決定通過隨機(jī)抽樣選擇幾個樣本校對學(xué)生進(jìn)行體能達(dá)標(biāo)測試,并規(guī)定測試成績低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過其總?cè)藬?shù)的5%,則該樣本校體能達(dá)標(biāo)為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機(jī)抽取40名學(xué)生參加體能達(dá)標(biāo)測試,首先將這40名學(xué)生隨機(jī)分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測試后,兩組各自的成績統(tǒng)計如下:甲組的平均成績?yōu)?/span>70,方差為16,乙組的平均成績?yōu)?/span>80,方差為36.
(1)估計該樣本校學(xué)生體能測試的平均成績;
(2)求該樣本校40名學(xué)生測試成績的標(biāo)準(zhǔn)差s;
(3)假設(shè)該樣本校體能達(dá)標(biāo)測試成績服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差s作為的估計值,利用估計值估計該樣本校學(xué)生體能達(dá)標(biāo)測試是否合格?
(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機(jī)變量z服從正態(tài)分布,則,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,已知,且,對一切都成立.
(1)當(dāng)時,證明數(shù)列是常數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),過點(diǎn)的直線與交于、兩點(diǎn).
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點(diǎn)為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com