1.若函數(shù)f(x)在R上是增函數(shù),則( 。
A.f(-1)<f(0)<f(2)B.f(2)<f(0)<f(-1)C.f(0)<f(-1)<f(2)D.f(2)<f(-1)<f(0)

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:∵函數(shù)f(x)在R上是增函數(shù),
∴f(-1)<f(0)<f(2),
故選:A

點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,anan+1<0,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若冪函數(shù)f(x)的圖象過點(diǎn)($\frac{1}{2}$,2),則f(3)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)全集是實(shí)數(shù)集R,集合A={x|-1<x<3},集合B={x|m-2<x<m+2},
(1)若A∩B=∅,求實(shí)數(shù)m的取值范圍;
(2)若2∈B,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知M是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上的動(dòng)點(diǎn),N是圓(x-1)2+y2=1的動(dòng)點(diǎn),求|MN|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知曲線C上的動(dòng)點(diǎn)M(x,y).若向量$\overrightarrow{a}$=(x+2,y),$\overrightarrow$=(x-2,y)滿足|$\overrightarrow{a}$|+|$\overrightarrow$|=6,則曲線C的離心率是( 。
A.$\frac{2}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列賦值語(yǔ)句正確的是( 。
A.a+b=5B.5=aC.a+b=cD.a=a+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.正實(shí)數(shù)a1(i=1,2,…,10)滿足條件$\sum_{i=1}^{10}$ai=30.求證:$\sum_{i=1}^{10}$(ai-1)(ai-2)(ai-3)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=2an+n,且bn=$\frac{{a}_{n}-1}{{a}_{n}{a}_{n+1}}$.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案