設是拋物線=2px上不同的兩點,則=-是弦PQ過焦點的
[ ]
科目:高中數(shù)學 來源: 題型:013
設是拋物線=2px上不同的兩點,則=-是弦PQ過焦點的
[ ]
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省杭州學軍中學2009屆高三第十次月考數(shù)學(文)試題 題型:044
設拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A(x1,y1)、B(x2,y2)(y1>0,y2<0)兩點,M是拋物線的準線上的一點,O是坐標原點,若直線MA、MF、MB的斜率分別記為:kMA=a、kMF=b、kMB=c,(如圖)
(1)若y1y2=-4,求拋物線的方程;
(2)當b=2時,求證:a+c為定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011年四川省成都市畢業(yè)班摸底測試(文科)數(shù)學卷 題型:解答題
(本小題滿分12分)設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數(shù))于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足=x1x2+2(y1+y2).
(1)求證:直線l過定點;
(2)設(1)中的定點為P,若點M在射線PA上,滿足,求點M
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年內(nèi)蒙古元寶山區(qū)高三第一次摸底考試理科數(shù)學卷 題型:解答題
(本小題滿分12分)設直線l(斜率存在)交拋物線y2=2px(p>0,且p是常數(shù))于兩個不同點A(x1,y1),B(x2,y2),O為坐標原點,且滿足=x1x2+2(y1+y2).
(1)求證:直線l過定點;
(2)設(1)中的定點為P,若點M在射線PA上,滿足,求點M的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com