【題目】曲線y=1+ 與直線y=k(x﹣2)+4有兩個交點,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
【答案】D
【解析】解:根據(jù)題意畫出圖形,如圖所示:
由題意可得:直線l過A(2,4),B(﹣2,1),
又曲線 圖象為以(0,1)為圓心,2為半徑的半圓,
當(dāng)直線l與半圓相切,C為切點時,圓心到直線l的距離d=r,即 =2,
解得:k= ;
當(dāng)直線l過B點時,直線l的斜率為 = ,
則直線l與半圓有兩個不同的交點時,實數(shù)k的范圍為 .
故答案為:D
要求的實數(shù)k的取值范圍即為直線l斜率的取值范圍,主要求出斜率的取值范圍,方法為:曲線 表示以(0,1)為圓心,2為半徑的半圓,在坐標(biāo)系中畫出相應(yīng)的圖形,直線l與半圓有不同的交點,故抓住兩個關(guān)鍵點:當(dāng)直線l與半圓相切時,圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關(guān)于k的方程,求出方程的解得到k的值;當(dāng)直線l過B點時,由A和B的坐標(biāo)求出此時直線l的斜率,根據(jù)兩種情況求出的斜率得出k的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是正四面體的平面展開圖,G、H、M、N分別為DE、BE、EF、EC的中點,在這個正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個命題中,正確命題的序號是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x,y的不等式組 表示的平面區(qū)域內(nèi)存在點P(x0 , y0),滿足x0﹣2y0=2,求得m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)= +lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設(shè)h(x)= ,若在[1,e]上至少存在一個x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+ asinC﹣b﹣c=0.
(1)求角A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)= (萬元).當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+ (萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足(其中且).
(1)求函數(shù)的解析式,并判斷其奇偶性和單調(diào)性;
(2)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C: + =1(a>b>0)的離心率e= ,過點(0,﹣b),(a,0)的直線與原點的距離為 ,M(x0 , y0)是橢圓上任一點,從原點O向圓M:(x﹣x0)2+(y﹣y0)2=2作兩條切線,分別交橢圓于點P,Q.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若記直線OP,OQ的斜率分別為k1 , k2 , 試求k1k2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com