分析 (1)根據(jù)線面平行的性質(zhì)進(jìn)行判斷即可:
(2)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明.
解答 (1)解:E為AC中點(diǎn).理由如下:
平面PDE交AC于E,
即平面PDE∩平面ABC=DE,
而BC∥平面PDF,BC?平面ABC,
所以BC∥DE,
在△ABC中,因?yàn)镈為AB的中點(diǎn),所以E為AC中點(diǎn);
(2)證:因?yàn)镻A=PB,D為AB的中點(diǎn),
所以AB⊥PD,
因?yàn)槠矫鍼CD⊥平面ABC,平面PCD∩平面ABC=CD,
在銳角△PCD所在平面內(nèi)作PO⊥CD于O,
則PO⊥平面ABC,
因?yàn)锳B?平面ABC,
所以PO⊥AB
又PO∩PD=P,PO,PD?平面PCD,
則AB⊥平面PCD,
又PC?平面PCD,
所以AB⊥PC.
點(diǎn)評 本題主要考查空間直線和平面平行和面面垂直的應(yīng)用,要求熟練掌握相應(yīng)的性質(zhì)定理是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{e}})$ | B. | $({\frac{lg2}{2},\frac{lge}{e}})$ | C. | $({\frac{lg2}{2},e})$ | D. | $({0,\frac{lg2}{2}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com