【題目】(2016·無錫模擬)已知函數(shù)f(x)滿足,當x[0,1]時,f(x)x.g(x)f(x)mx2m在區(qū)間(1,1]上有兩個零點,則實數(shù)m的取值范圍是________________

【答案】

【解析】當-1x0時,0x11,由f(x)1,可得f(x)1,則yf(x)在區(qū)間(1,1]上的圖象如圖所示.若g(x)f(x)mx2m(1,1]上有兩個零點,則函數(shù)yf(x)的圖象與直線ymx2m(1,1]上有兩個交點.從圖象分析可知,直線ymx2m恒過定點(2,0),且與y軸的交點(0,2m)應位于y軸的正半軸,可知m0,即直線ymx2m的斜率大于0,而此時應使直線ymx2m上的點(1,3m)位于點(1,1)或其下方,則可得3m≤1,即m.綜上所述,0m.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)sin ωxcos ωx(ω>0)的最小正周期為π.

(1)求函數(shù)yf(x)圖象的對稱軸方程;

(2)討論函數(shù)f(x)上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線與雙曲線的漸近線交于兩點,設為雙曲線上任一點,若為坐標原點),則下列不等式恒成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為, 直線過點.

(Ⅰ)若點到直線的距離為, 求直線的斜率;

(Ⅱ)為拋物線上兩點, 不與軸垂直, 若線段的垂直平分線恰過點, 求證: 線段中點的橫坐標為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓G 的離心率為,過橢圓G右焦點F的直線mx1與橢圓G交于點M(M在第一象限)

()求橢圓G的方程;

()已知A為橢圓G的左頂點,平行于AM的直線l與橢圓G相交于B,C兩點,請判斷直線MB,MC是否關于直線m對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的對稱中心為原點O,焦點在x軸上,左,右焦點分別為F1F2,上頂點和右頂點分別為B,A,線段AB的中點為D,且,AOB的面積為.

(1)求橢圓C的方程;

(2)F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內兩點P,Q滿足條件:①P,Q都在函數(shù)yf(x)的圖象上;②P,Q關于原點對稱,則稱(P,Q)是函數(shù)yf(x)的一個“伙伴點組”(點組(P,Q)(Q,P)看作同一個“伙伴點組”).已知函數(shù)f(x)有兩個“伙伴點組”,則實數(shù)k的取值范圍是(  )

A. (0) B. (0,1)

C. D. (0,+)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對此進行了問卷調查,在所有參與調查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:

支持

保留

不支持

30歲以下

900

120

280

30歲以上(含30歲)

300

260

140

(Ⅰ)在所有參與調查的人中,用分層抽樣的方法抽取部分市民做進一步調研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽取;

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進一步的調研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

1)討論函數(shù)的單調性;

2)當時,試判斷函數(shù)的零點個數(shù).

查看答案和解析>>

同步練習冊答案