【題目】甲、乙兩人同時參加一次數(shù)學測試,共有道選擇題,每題均有個選項,答對得分,答錯或不答得分.甲和乙都解答了所有的試題,經(jīng)比較,他們只有道題的選項不同,如果甲最終的得分為分,那么乙的所有可能的得分值組成的集合為____________

【答案】

【解析】

將甲、乙兩人選項不同的試題分成兩類,一類是在甲答對的題目中,另一類是在甲答錯的題目中,再結(jié)合乙能否答對的情況,求得乙的所有可能的得分值組成的集合.

甲得分有分,所以甲一共答對題,答錯. 將甲、乙兩人選項不同的試題分成兩類,一類是在甲答對的題目中,另一類是在甲答錯的題目中.

若選項不同的試題在甲答對的題目中,則乙的選項錯誤,故乙一共答對題,答錯題,得分為.

若選項不同的試題在甲答錯的題目中,

i)若乙答錯此題,則乙一共答對題,答錯題,得分為.

ii)若乙答對此題,則乙一共答對題,答錯題,得分為.

綜上所述,乙的所有可能的得分值組成的集合為.

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實數(shù)的取值范圍;

2)設(shè),在區(qū)間上的值域為,集合中元素的個數(shù)為,求證:;

3)設(shè)),,若對于,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖圓錐PO,軸截面PAB是邊長為2的等邊三角形,過底面圓心O作平行于母線PA的平面,與圓錐側(cè)面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到其頂點E的距離為( )

A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)漸近函數(shù);

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;

2)若函數(shù),證明:當時,不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,底面ABC,M BC的中點,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線PMAC所成角的大小. (結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.

(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;

(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求的方程;

(2)如圖,經(jīng)過橢圓左頂點且斜率為的直線交于兩點,交軸于點,點為線段的中點,若點關(guān)于軸的對稱點為,過點為坐標原點)垂直的直線交直線于點,且面積為,求的值.

查看答案和解析>>

同步練習冊答案