【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB=2a,F(xiàn)為CD的中點(diǎn).

(1)求證:AF∥平面BCE;

(2)判斷平面BCE與平面CDE的位置關(guān)系,并證明你的結(jié)論.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)取CE中點(diǎn)M,根據(jù)平幾知識(shí)可得四邊形BAFM為平行四邊形,即得BM//AF,再根據(jù)線面平行判定定理得結(jié)論(2)先根據(jù)空間直角坐標(biāo)系,再設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解得平面法向量,根據(jù)法向量相互垂直得平面BCE與平面CDE垂直.

試題解析:

建立如圖所示的空間直角坐標(biāo)系Axyz,則A(0,0,0),C(2a,0,0),B(0,0,a),D(a, a,0),E(a, a,2a).

因?yàn)?/span>FCD的中點(diǎn),

所以F.

(1)證明:,=(a, a,a),=(2a,0,-a).

因?yàn)?/span> (),AF平面BCE,所以AF∥平面BCE.

(2)平面BCE⊥平面CDE.證明如下:

因?yàn)?/span>=(-a, a,0),=(0,0,-2a),所以·=0,A·=0,所以,所以AF⊥平面CDE

AF∥平面BCE,所以平面BCE⊥平面CDE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與曲線恰有兩個(gè)不同的交點(diǎn),記的所有可能取值構(gòu)成集合,是橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,記的所有可能取值構(gòu)成集合,若隨機(jī)從集合中分別抽出一個(gè)元素,則的概率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知幾何體,其中四邊形為直角梯形,四邊形為矩形, ,且, .

(1)試判斷線段上是否存在一點(diǎn),使得平面,請(qǐng)說明理由;

(2)若,求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(點(diǎn)不重合),則下列結(jié)論正確的是____.

①存在點(diǎn),使得平面平面;

②存在點(diǎn),使得平面

的面積不可能等于;

④若分別是在平面與平面的正投影的面積,則存在點(diǎn),使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若關(guān)于的方程只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;

(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,F關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P,過F軸的垂線交拋物線于M,N兩點(diǎn),給出下列三個(gè)結(jié)論:

必為直角三角形;

②直線必與拋物線相切;

的面積為.其中正確的結(jié)論是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,射線與橢圓的交點(diǎn)為M,過M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于A,B兩點(diǎn)(異于M).

(1)求證:直線AB的斜率為定值;

(2)求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, 平面 ,底面是等腰梯形,且 ,其中 .

1)證明:平面 平面 .

2)求點(diǎn) 到平面 的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過定點(diǎn).

【答案】(Ⅰ).(Ⅱ)直線過定點(diǎn).

【解析】試題分析】(I)根據(jù)圓的半徑和已知 ,,由此求得橢圓方程.(II)設(shè)出直線的方程,聯(lián)立直線方程與橢圓方程,寫出韋達(dá)定理,寫出的斜率并相加,由此求得直線過定點(diǎn).

試題解析】

(Ⅰ)圓軸交點(diǎn)即為橢圓的焦點(diǎn),圓軸交點(diǎn)即為橢圓的上下兩頂點(diǎn),所以, .從而,

因此橢圓的方程為: .

(Ⅱ)設(shè)直線的方程為.

,消去.

設(shè), ,則, .

直線的斜率 ;

直線的斜率 .

.

的平分線在軸上,得.又因?yàn)?/span>,所以,

所以.

因此,直線過定點(diǎn).

[點(diǎn)睛]本小題主要考查橢圓方程的求解,考查圓與橢圓的位置關(guān)系,考查直線與圓錐曲線位置關(guān)系. 涉及直線與橢圓的基本題型有:(1)位置關(guān)系的判斷.(2)弦長、弦中點(diǎn)問題.(3)軌跡問題.(4)定值、最值及參數(shù)范圍問題.(5)存在性問題.常用思想方法和技巧有:(1)設(shè)而不求.(2)坐標(biāo)法.(3)根與系數(shù)關(guān)系.

型】解答
結(jié)束】
21

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案