用三段論的形式寫(xiě)出“矩形的對(duì)角線(xiàn)相等,正方形是矩形,所以正方形的對(duì)角線(xiàn)相等.” 的演繹推理過(guò)程_____________________________________________________
每一個(gè)矩形的對(duì)角線(xiàn)相等(大前提) 正方形是矩形(小前提) 正方形的對(duì)角線(xiàn)相等(結(jié)論)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線(xiàn)上的兩個(gè)點(diǎn),若△PQF是邊長(zhǎng)為2的正三角形,則p的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且=0.
(1) 求橢圓E的離心率;
(2) 已知點(diǎn)D(1,0)為線(xiàn)段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線(xiàn)MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
雙曲線(xiàn)C與橢圓=1有相同的焦點(diǎn),直線(xiàn)y=x為C的一條漸近線(xiàn).求雙曲線(xiàn)C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
雙曲線(xiàn)=1上一點(diǎn)P到右焦點(diǎn)的距離是實(shí)軸兩端點(diǎn)到右焦點(diǎn)距離的等差中項(xiàng),則P點(diǎn)到左焦點(diǎn)的距離為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知數(shù)列{an}滿(mǎn)足a1=2,an+1= (n∈N*),則a3=________,a1·a2·a3·…·a2007=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在平面上,若兩個(gè)正三角形的邊長(zhǎng)的比為1∶2,則它們的面積比為1∶4,類(lèi)似地,在空間內(nèi),若兩個(gè)正四面體的棱長(zhǎng)的比為1∶2,則它們的體積比為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用反證法證明命題“a·b(a、b∈Z)是偶數(shù),那么a、b中至少有一個(gè)是偶數(shù).”那么反設(shè)的內(nèi)容是__________________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com