分析 如圖所示,由|PF2|=|F1F2|,2|PF1|=3|QF1|,利用橢圓的定義可得:|PF1|=2a-2c,|QF1|=$\frac{4(a-c)}{3}$,|QF2|=$\frac{2a+4c}{3}$.在等腰△PF1F2中,可得cos∠PF1F2=$\frac{a-c}{2c}$.在△QF1F2中,由余弦定理可得:cos∠QF1F2,利用cos∠PF1F2+cos∠QF1F2=0,及其離心率計算公式即可得出.
解答 解:如圖所示,
∵|PF2|=|F1F2|,
∴|PF2|=2c,|PF1|=2a-2c.
∵2|PF1|=3|QF1|,
∴|QF1|=$\frac{4(a-c)}{3}$,
∴|QF2|=$\frac{2a+4c}{3}$.
在等腰△PF1F2中,可得cos∠PF1F2=$\frac{\frac{1}{2}|P{F}_{1}|}{|{F}_{1}{F}_{2}|}$=$\frac{a-c}{2c}$.
在△QF1F2中,由余弦定理可得:cos∠QF1F2=$\frac{(2c)^{2}+\frac{16(a-c)^{2}}{9}-\frac{(2a+4c)^{2}}{9}}{2×2c×\frac{4(a-c)}{3}}$,
∵cos∠PF1F2+cos∠QF1F2=0,
∴5e2-8e+3=0,又0<e<1,
解得e=$\frac{3}{5}$.
點評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理、等腰三角形與直角三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | BD∥平面CB1D1 | |
B. | AC1⊥B1C | |
C. | AC1⊥平面CB1D1 | |
D. | 直線CC1與平面CB1D1所成的角為45° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com