【題目】中國剩余定理又稱孫子定理1852年,英國來華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為中國剩余定理中國剩余定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將120192019個數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項中,中間項的值為( 。

A.992B.1022C.1007D.1037

【答案】C

【解析】

首先將題目轉(zhuǎn)化為即是3的倍數(shù),也是5的倍數(shù),也即是15的倍數(shù).再寫出的通項公式,算其中間項即可.

將題目轉(zhuǎn)化為即是3的倍數(shù),也是5的倍數(shù),也即是15的倍數(shù).

當(dāng),,

當(dāng),,

……,數(shù)列共有項.

因此數(shù)列中間項為第項,.

故答案為:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,沿對角線折起,使得點在平面上的射影恰好落在邊上.

(1)求證:平面平面;

(2)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年,中央和國務(wù)院辦公廳印發(fā)《關(guān)于引導(dǎo)農(nóng)村土地經(jīng)營權(quán)有序流轉(zhuǎn)發(fā)展農(nóng)業(yè)適度規(guī)模經(jīng)營的意見》,要求大力發(fā)展土地流轉(zhuǎn)和適度規(guī)模經(jīng)營.某種糧大戶2015年開始承包了一地區(qū)的大規(guī)模水田種植水稻,購買了一種水稻收割機若干臺,這種水稻收割機隨著使用年限的增加,每年的養(yǎng)護費也相應(yīng)增加,這批水稻收割機自購買使用之日起,5年以來平均每臺水稻收割機的養(yǎng)護費用數(shù)據(jù)統(tǒng)計如下:

年份

2015

2016

2017

2018

2019

年份代碼

1

2

3

4

5

養(yǎng)護費用 (萬元)

1.1

1.6

2

2.5

2.8

1)從這5年中隨機抽取2年,求平均每臺水稻收割機每年的養(yǎng)護費用至少有1年多于2萬元的概率;

2)求關(guān)于的線性回歸方程;

3)若該水稻收割機的購買價格是每臺16萬元,由(2)中的回歸方程,從每臺水稻收割機的年平均費用角度,你認(rèn)為一臺該水稻收割機是使用滿5年就淘汰,還是繼續(xù)使用到滿8年再淘汰?

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.

某位患者因患肺炎發(fā)熱,于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱. 住院期間,患者每天上午8:00服藥,護士每天下午16:00為患者測量腋下體溫記錄如下:

1)請你計算住院期間該患者體溫不低于的各天體溫平均值;

2)在日期間,醫(yī)生會隨機選取天在測量體溫的同時為該患者進行某一特殊項目項目的檢查,記高熱體溫下做項目檢查的天數(shù),試求的分布列與數(shù)學(xué)期望;

3)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓過定點,且在軸上截得的弦長,設(shè)動圓圓心的軌跡為曲線

1)求曲線的方程;

2)過點作直線交曲線兩點,問在曲線上是否存在一點,使得點在以為直徑的圓上?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】馬林梅森是17世紀(jì)法國著名的數(shù)學(xué)家和修道士,也是當(dāng)時歐洲科學(xué)界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎(chǔ)上對2p1作了大量的計算、驗證工作,人們?yōu)榱思o(jì)念梅森在數(shù)論方面的這一貢獻,將形如2P1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面平面,的中點,,.

1)求證:平面平面

2)若異面直線所成角為,求的長;

3)在(2)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點為圓上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.

1)求曲線的方程;

2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案