【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1 , Q2 , Q3中最大的是
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1 , p2 , p3中最大的是

【答案】Q1;p2
【解析】解:①若Qi為第i名工人在這一天中加工的零件總數(shù),
Q1=A1的綜坐標+B1的綜坐標;
Q2=A2的綜坐標+B2的綜坐標,
Q3=A3的綜坐標+B3的綜坐標,
由已知中圖象可得:Q1 , Q2 , Q3中最大的是Q1 ,
②若pi為第i名工人在這一天中平均每小時加工的零件數(shù),
則pi為AiBi中點與原點連線的斜率,
故p1 , p2 , p3中最大的是p2
所以答案是:Q1 , p2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lm,平面αβ,下列命題正確的是 (  )

A. lβlααβ

B. lβ,mβ,lα,mααβ

C. lm,lα,mβαβ

D. lβ,mβ,lαmα,lmMαβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線x2=y,點A(﹣ , ),B( ),拋物線上的點P(x,y)(﹣ <x< ),過點B作直線AP的垂線,垂足為Q.
(Ⅰ)求直線AP斜率的取值范圍;
(Ⅱ)求|PA||PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間中三點A-2,0,2,B-1,1,2,C-3,0,4,設(shè)a=,b=

1求向量a與向量b的夾角的余弦值;

2若ka+b與ka-2b互相垂直,求實數(shù)k的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣2x+ex ,其中e是自然對數(shù)的底數(shù).若f(a﹣1)+f(2a2)≤0.則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點是f(x)的零點.(極值點是指函數(shù)取極值時對應(yīng)的自變量的值)
(Ⅰ)求b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)證明:b2>3a;
(Ⅲ)若f(x),f′(x)這兩個函數(shù)的所有極值之和不小于﹣ ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點,將BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是(  。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案