【題目】設(shè)命題:函數(shù)的定義域?yàn)?/span>;命題:關(guān)于的方程有實(shí)根.
(1)如果是真命題,求實(shí)數(shù)的取值范圍.
(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
【答案】(1) 實(shí)數(shù)的取值范圍為;(2) 實(shí)數(shù)的取值范圍是或.
【解析】試題分析:(1)由函數(shù)的定義域?yàn)?/span>可得,可得實(shí)數(shù)的取值范圍為;(2)化簡命題可得,由為真命題, 為假命題,可得一真一假,分兩種情況討論,對于真假以及假真分別列不等式組,分別解不等式組,然后求并集即可求得實(shí)數(shù)的取值范圍.
試題解析:(1)若命題是真命題,則有①當(dāng)時(shí)定義域?yàn)?/span>,不合題意
②當(dāng)時(shí),由已知可得
故所求實(shí)數(shù)的取值范圍為
(2)若命題是真命題,則關(guān)于的方程有實(shí)根,令,
∴
若命題“”為真命題,且“”為假命題,則一真一假
若真假,則;若假真,則
綜上:實(shí)數(shù)的取值范圍是或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與圓相切于點(diǎn),且與橢圓只有一個(gè)公共點(diǎn).
①求證: ;
②當(dāng)為何值時(shí), 取得最大值?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的邊長為,且其
三個(gè)頂點(diǎn)均在拋物線上.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)動(dòng)直線與拋物線相切于點(diǎn),與直線
相交于點(diǎn).證明以為直徑的圓恒過軸上某定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某大型景區(qū)有兩條直線型觀光路線, , ,點(diǎn)位于的平分線上,且與頂點(diǎn)相距1公里.現(xiàn)準(zhǔn)備過點(diǎn)安裝一直線型隔離網(wǎng) (分別在和上),圍出三角形區(qū)域,且和都不超過5公里.設(shè), (單位:公里).
(Ⅰ)求的關(guān)系式;
(Ⅱ)景區(qū)需要對兩個(gè)三角形區(qū)域, 進(jìn)行綠化.經(jīng)測算, 區(qū)城每平方公里的綠化費(fèi)用是區(qū)域的兩倍,試確定的值,使得所需的總費(fèi)用最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓: 的左、右焦點(diǎn)分別為,上頂點(diǎn)為A,過點(diǎn)A與垂直的直線交軸負(fù)半軸于點(diǎn),且,若過, , 三點(diǎn)的圓恰好與直線相切.過定點(diǎn)的直線與橢圓交于, 兩點(diǎn)(點(diǎn)在點(diǎn), 之間).
(Ⅰ)求橢圓的方程;(Ⅱ)若實(shí)數(shù)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究患肺癌與是否吸煙有關(guān),某腫瘤機(jī)構(gòu)隨機(jī)抽取了40人做相關(guān)調(diào)查,其中不吸煙人數(shù)與吸煙人數(shù)相同,已知吸煙人數(shù)中,患肺癌與不患肺癌的比為;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.
(1)現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;
(2)是否有99.9%的把握認(rèn)為患肺癌與吸煙有關(guān)?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy 中,曲線C的參數(shù)方程為 (是參數(shù),0≤≤π),以O(shè) 為極點(diǎn),以x 軸的正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線C 的極坐標(biāo)方程;
(Ⅱ)直線l1,的極坐標(biāo)方程是2psin(θ+)+=0,直線l2:θ =與曲線C的交點(diǎn)為P,與直線l1的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A,B,交其準(zhǔn)線l于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( )
A. y2=9x B. y2=6x C. y2=3x D. y2=x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在參加某次社會實(shí)踐的學(xué)生中隨機(jī)選取名學(xué)生的成績作為樣本,這名學(xué)生的成績?nèi)吭?/span>分至分之間,現(xiàn)將成績按如下方式分成組:第一組,成績大于等于分且小于分;第二組,成績大于等于分且小于分;第六組,成績大于等于分且小于等于分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的名學(xué)生中.
(Ⅰ)求的值及成績在區(qū)間內(nèi)的學(xué)生人數(shù).
(Ⅱ)從成績小于分的學(xué)生中隨機(jī)選名學(xué)生,求最多有名學(xué)生成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com