(1)已知sin(
7
2
π-α)=-
1
2
,求sin2
9
2
π-α)+cos(3π-α)的值;

(2)證明:
tan(α+β)-tanα
1+tanαtan(α+β)
=
sin2β
2cos2β
考點:兩角和與差的正切函數(shù),運用誘導公式化簡求值
專題:綜合題,三角函數(shù)的求值
分析:(1)利用誘導公式化簡,即可得出結(jié)論;
(2)利用兩角和與差的正切函數(shù)、二倍角的正弦公式,代入化簡,即可證明結(jié)論.
解答: (1)解:∵sin(
7
2
π-α)=-
1
2
,
∴cosα=
1
2
,
∴sin2
9
2
π-α)+cos(3π-α)=cos2α-cosα=-
1
4
;
(2)證明:∵
tan(α+β)-tanα
1+tanαtan(α+β)
=tan(α+β-α)=tanβ,
sin2β
2cos2β
=
2sinβcosβ
2cos2β
=tanβ,
tan(α+β)-tanα
1+tanαtan(α+β)
=
sin2β
2cos2β
點評:本題考查誘導公式、兩角和與差的正切函數(shù)、二倍角的正弦公式,考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={1,0},B={1,2},則A∩B=(  )
A、{1,0,2}B、{1}
C、{2}D、{0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
cosx (-π≤x<0)
sinx  (0≤x≤π)

(1)若f(x)=
1
2
,求x的值;
(2)若a為常數(shù),且a∈R,試討論方程f(x)=a的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=|2x-1|.
(I)不等式f(x)≤a的解集為{x|0≤x≤1},求a值;
(Ⅱ)若g(x)=
1
f(x)+f(x-1)+m
的定義域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

公安部交管局修改后的酒后違法駕駛機動車的行為分為兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標準是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當20≤X<80時,認定為酒后駕車;當X≥80時,認定為醉酒駕車.重慶市公安局交通管理部門在對G42高速公路我市路段的一次隨機攔查行動中,依法檢測了200輛機動車駕駛員的每100毫升血液中的酒精含量,酒精含量X(單位:毫克)的統(tǒng)計結(jié)果如下表:
X[0,20)[20,40)[40,60)[60,80)[80,100)[100,+∞)
人數(shù)t11111
依據(jù)上述材料回答下列問題:
(1)求t的值;
(2)從酒后違法駕車的司機中隨機抽取2人,求這2人含有醉酒駕車司機的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2+a6=10,a5=6,數(shù)列bn=an1-an
(1)求數(shù)列{bn}的通項公式;
(2)證明:b1+3b2+5b3+…+(2n-1)bn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在等差數(shù)列{an}中,a1=1,a3=3求數(shù)列前6項的和;
(2)在等比數(shù)列{an}中,a1=1,a3=4且an>0,求a5的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+
a-1
x
-lnx.
(1)當a≤
1
2
時,試討論函數(shù)f(x)的單調(diào)性;
(2)證明:對任意的n∈N+,有
ln1
1
+
ln2
2
+…+
ln(n-1)
n-1
+
lnn
n
n2
2(n+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1.
(Ⅰ)當a=1時,求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當a=
1
3
時,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈[1,2],?x2∈[0,1],使f(x1)=g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案