【題目】要分析學生初中升學考試的數(shù)學成績對高一年級數(shù)學學習有什么影響,在高一年級學生中隨機抽取10名學生,分析他們?nèi)雽W的數(shù)學成績(x)和高一年級期末數(shù)學考試成績(y)(如下表):
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)畫出散點圖;
(2)判斷入學成績(x)與高一期末考試成績(y)是否有線性相關(guān)關(guān)系;
(3)如果x與y具有線性相關(guān)關(guān)系,求出回歸直線方程;
【答案】
(1)解:入學成績(x)與高一期末考試成績(y)兩組變量的散點圖如圖:
(2)解:從散點圖可以看出這兩組變量具有線性相關(guān)關(guān)系
(3)解:設所求的回歸直線方程為 = x+ ,經(jīng)計算可得 ,
,
因此所求的回歸直線方程為 =0.787 389x+21.182 78
【解析】(1)通過觀察散點可知這兩組變量具有線性相關(guān)。
(2)由已知條件可設回歸線方程,通過求、可以求出和,從而求出回歸直線方程。
【考點精析】利用變量間的相關(guān)關(guān)系對題目進行判斷即可得到答案,需要熟知變量之間的兩類關(guān)系:函數(shù)關(guān)系與相關(guān)關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=x3+a|x2﹣1|,a∈R,則對于不同的實數(shù)a,則函數(shù)f(x)的單調(diào)區(qū)間個數(shù)不可能是( )
A.1個
B.2個
C.3個
D.5個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以原點為O極點,以x軸正半軸為極軸,圓C的極坐標方程為ρ=4 .
(1)將圓C的極坐標方程化為直角坐標方程;
(2)過點P(2,0)作斜率為1直線l與圓C交于A,B兩點,試求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),已知點 , ,圓 的方程為 ,點 為圓上的動點.
(1)求過點 的圓 的切線方程.
(2)求 的最大值及此時對應的點 的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( , ),直線l的極坐標方程為ρcos(θ﹣ )=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設P為雙曲線 右支上一點,M,N分別是圓(x+4)2+y2=4和(x﹣4)2+y2=1上的點,設|PM|﹣|PN|的最大值和最小值分別為m,n,則|m﹣n|=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,已知AD=2AB=2a,BD= ,AC∩BD=E,將其沿對角線BD折成直二面角.
求證:
(1)AB⊥平面BCD;
(2)平面ACD⊥平面ABD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為弘揚民族古典文化,市電視臺舉行古詩詞知識競賽,某輪比賽由節(jié)目主持人隨機從題庫中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負10分.根據(jù)以往統(tǒng)計,某參賽選手能答對每一個問題的概率均為 ;現(xiàn)記“該選手在回答完n個問題后的總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記X=|S5|,求X的分布列,并計算數(shù)學期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com