【題目】為弘揚(yáng)民族古典文化,市電視臺(tái)舉行古詩(shī)詞知識(shí)競(jìng)賽,某輪比賽由節(jié)目主持人隨機(jī)從題庫(kù)中抽取題目讓選手搶答,回答正確將給該選手記正10分,否則記負(fù)10分.根據(jù)以往統(tǒng)計(jì),某參賽選手能答對(duì)每一個(gè)問(wèn)題的概率均為 ;現(xiàn)記“該選手在回答完n個(gè)問(wèn)題后的總得分為Sn”.
(1)求S6=20且Si≥0(i=1,2,3)的概率;
(2)記X=|S5|,求X的分布列,并計(jì)算數(shù)學(xué)期望E(X).
【答案】
(1)解:當(dāng)S6=20時(shí),即回答6個(gè)問(wèn)題后,正確4個(gè),錯(cuò)誤2個(gè).
若回答正確第1個(gè)和第2個(gè)問(wèn)題,則其余4個(gè)問(wèn)題可任意回答正確2個(gè)問(wèn)題;
若第一個(gè)問(wèn)題回答正確,第2個(gè)問(wèn)題回答錯(cuò)誤,第三個(gè)問(wèn)題回答正確,則其余三個(gè)問(wèn)題可任意回答正確2個(gè).
記回答每個(gè)問(wèn)題正確的概率為p,則 ,同時(shí)回答每個(gè)問(wèn)題錯(cuò)誤的概率為
故所求概率為:
(2)解:由X=|S5|可知X的取值為10,30,50
可有 ,
,
故X的分布列為:
X | 10 | 30 | 50 |
P |
E(X)= =
【解析】(1)當(dāng)S6=20時(shí),即回答6個(gè)問(wèn)題后,正確4個(gè),錯(cuò)誤2個(gè).若回答正確第1個(gè)和第2個(gè)問(wèn)題,則其余4個(gè)問(wèn)題可任意回答正確2個(gè)問(wèn)題;若第一個(gè)問(wèn)題回答正確,第2個(gè)問(wèn)題回答錯(cuò)誤,第三個(gè)問(wèn)題回答正確,則其余三個(gè)問(wèn)題可任意回答正確2個(gè).記回答每個(gè)問(wèn)題正確的概率為p,則 ,同時(shí)回答每個(gè)問(wèn)題錯(cuò)誤的概率為 ,由此能求出S6=20且Si≥0(i=1,2,3)的概率.(2)由X=|S5|可知X的取值為10,30,50,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要分析學(xué)生初中升學(xué)考試的數(shù)學(xué)成績(jī)對(duì)高一年級(jí)數(shù)學(xué)學(xué)習(xí)有什么影響,在高一年級(jí)學(xué)生中隨機(jī)抽取10名學(xué)生,分析他們?nèi)雽W(xué)的數(shù)學(xué)成績(jī)(x)和高一年級(jí)期末數(shù)學(xué)考試成績(jī)(y)(如下表):
編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
x | 63 | 67 | 45 | 88 | 81 | 71 | 52 | 99 | 58 | 76 |
y | 65 | 78 | 52 | 85 | 92 | 89 | 73 | 98 | 56 | 75 |
(1)畫(huà)出散點(diǎn)圖;
(2)判斷入學(xué)成績(jī)(x)與高一期末考試成績(jī)(y)是否有線(xiàn)性相關(guān)關(guān)系;
(3)如果x與y具有線(xiàn)性相關(guān)關(guān)系,求出回歸直線(xiàn)方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為評(píng)估新教改對(duì)教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對(duì)比實(shí)驗(yàn).甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測(cè)試,成績(jī)結(jié)果全部落在[60,100]區(qū)間內(nèi)(滿(mǎn)分100分),并繪制頻率分布直方圖如圖,兩個(gè)班人數(shù)均為60人,成績(jī)80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好2×2聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生
(2)成績(jī)優(yōu)良與班級(jí)有關(guān)?
(3)以班級(jí)分層抽樣,抽取成績(jī)優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選3人來(lái)作書(shū)面發(fā)言,求發(fā)言人至少有2人來(lái)自甲班的概率.(以下臨界值及公式僅供參考)
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
k2= ,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意a、b∈R,當(dāng)a+b≠0時(shí),都有 .
(1)若a>b,試比較f(a)與f(b)的大小關(guān)系;
(2)若f(1+m)+f(3-2m)≥0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論不正確的是(填序號(hào)).
①各個(gè)面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線(xiàn)為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則此棱錐可能是六棱錐;
④圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AB=AC=AA1 , AB⊥AC,M是CC1的中點(diǎn),N是BC的中點(diǎn),點(diǎn)P在線(xiàn)段A1B1上運(yùn)動(dòng).
(Ⅰ)求證:PN⊥AM;
(Ⅱ)試確定點(diǎn)P的位置,使直線(xiàn)PN和平面ABC所成的角最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l過(guò)點(diǎn)M(3,4),其傾斜角為45°,圓C的參數(shù)方程為 .再以原點(diǎn)為極點(diǎn),以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位.
(1)求圓C的極坐標(biāo)方程;
(2)設(shè)圓C與直線(xiàn)l交于點(diǎn)A、B,求|MA||MB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com