設k=
π
0
(sinx-cosx)dx,若(1-kx)8=a0+a1x+a2x2+…+a8x8,則a1+a2+a3+…+a8=(  )
A、-1B、0C、lD、256
考點:二項式系數(shù)的性質
專題:計算題,二項式定理
分析:利用微積分基本定理求出k的值,通過對二項式中的x賦值求出常數(shù)項,a0+a1+a2+a3+…+a8,即可得出結論.
解答: 解:k=
π
0
(sinx-cosx)dx
=(-cosx-sinx)
|
π
0
=2,
令x=0得,a0=1,
令x=1得,a0+a1+a2+a3+…+a8=1,
∴a1+a2+a3+…+a8=0.
故選:B.
點評:求二項展開式的系數(shù)和問題常用的方法是通過觀察給二項式中x的賦值即賦值求系數(shù)和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l的法向量為
n
=(2,1)
,則該直線的傾斜角為
 
.(用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式22x≤3•2x+
x
+4•22
x
的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(sinx+cosx)2的最小正周期為( 。
A、2π
B、π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設全集U={1,2,3,4,5},集合M={1,2,4},則集合∁UM=( 。
A、{1,2,4}
B、{3,4,5}
C、{2,5}
D、{3,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若 m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎上給出下列關于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
];
②點(k,0)是y=f(x)的圖象的對稱中心,其中k∈Z;
③函數(shù)y=f(x)的最小正周期為1;
④函數(shù)y=f(x)在(-
1
2
,
3
2
]上是增函數(shù).
則上述命題中真命題的序號是( 。
A、①④B、①③C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先將函數(shù)y=f(x)的圖象向右移
π
6
個單位,再將所得的圖象作關于直線x=
π
4
的對稱變換,得到y=sin(-2x+
π
3
)
的函數(shù)圖象,則f(x)的解析式是( 。
A、y=sin(-2x+
π
3
)
B、y=sin(-2x-
π
3
)
C、y=sin(2x-
π
3
)
D、y=sin(2x+
π
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
x
a
cosθ+
y
b
sinθ=1,
x
a
sinθ-
y
b
cosθ=1.求證:
x2
a2
+
y2
b2
=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:sin2α-
sinαcosα
sin2α
+cos2α

查看答案和解析>>

同步練習冊答案