16.已知函數(shù)y=a-bcosx(b>0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$,求函數(shù)y=-2asinbx的最大值和最小值.

分析 由三角函數(shù)的最值可得ab的方程組,解方程組代入函數(shù)解析式,由三角函數(shù)的最值可得.

解答 解:∵函數(shù)y=a-bcosx(b>0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{a-b=-\frac{1}{2}}\\{a+b=\frac{3}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$,∴函數(shù)y=-2asinbx=-sinx,
∴最大值和最小值分別為1,-1.

點(diǎn)評 本題考查三角函數(shù)的最值,涉及待定系數(shù)法,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,試比較f(a)與f(b)的大。
(Ⅱ)若函數(shù)g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在區(qū)間[3,4]上沒有零點(diǎn),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,tanA=$\frac{1}{3}$,B=$\frac{π}{4}$.若橢圓E以AB為長軸,且過點(diǎn)C,則橢圓E的離心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平行四邊形ABCD中,∠CBD=90°,BC=BD=1,將平行四邊形沿對角線BD折成60°的二面角(如圖中實線部分).求:
(Ⅰ)A、C兩點(diǎn)間的距離;
(Ⅱ)異面直線AC與BD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果角α的終邊經(jīng)過點(diǎn)P(sin780°,cos(-330°)),則sinα=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有l(wèi)nx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=$\frac{2tanx}{1-tan^2x}$的最小正周期為( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.正三棱柱ABC一A1B1C1的底面邊長為2,D為AB上一點(diǎn),如圖,建立空間直角坐標(biāo)系.
(1)若$\overrightarrow{{A}_{1}D}$是平面B1DC的法向量,即$\overrightarrow{{A}_{1}D}$⊥平面B1DC,求正三棱柱的側(cè)棱長.
(2)若D為AB的中點(diǎn),且$\overrightarrow{{A}_{1}D}$⊥$\overrightarrow{{CB}_{1}}$,求正三棱柱的側(cè)棱長.
(3)在(2)情況下,在側(cè)棱CC1上求一點(diǎn)N,使得cos($\overrightarrow{{DB}_{1}}$,$\overrightarrow{AN}$)=$\frac{3}{\sqrt{34}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三個點(diǎn)A(0,0),B(2,0),C(4,2),則△ABC的外心的縱坐標(biāo)是3.

查看答案和解析>>

同步練習(xí)冊答案