【題目】設(shè)數(shù)列的前項和為,且),設(shè)),數(shù)列的前項和.

1)求、、的值;

2)利用“歸納—猜想—證明”求出的通項公式;

3)求數(shù)列的通項公式.

【答案】1,,;(2);(3.

【解析】

1)先代,求得,當(dāng)時,根據(jù),化簡得到的遞推式,

再代,求得,并為求第(2)問提供基礎(chǔ);

2)由(1)歸納猜想,并用數(shù)學(xué)歸納法證明;

3)由(2)求得的,求出,并化簡,分析,發(fā)現(xiàn)可用裂項相消法求解,

考慮消去方便,可對分奇數(shù)和偶數(shù)兩種情況分析,最后合并得到答案.

解:(1)由,令,則,得,

當(dāng)時,由,得,得,

,得,令,得,即,.

2)由(1)知,,,猜想,

下面用數(shù)學(xué)歸納法證明:① 當(dāng) 時,由猜想知顯然成立;

②假設(shè)猜想成立,即,

則當(dāng)時,由(1)有,

即當(dāng)時,猜想也成立.

綜合①②可知,猜想成立,即

3)由(2)知,當(dāng)時,,

綜合知:,又,

當(dāng)為偶數(shù)時,

當(dāng)為奇數(shù)時,

綜上可得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F(1,0),拋物線E:x2=2py的焦點為M.

(1)若過點M的直線l與拋物線C有且只有一個交點,求直線l的方程;

(2)若直線MF與拋物線C交于A,B兩點,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的物理知識競賽中,將三個年級參賽學(xué)生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數(shù)是15.

1)求成績在50-70分的頻率是多少

2)求這三個年級參賽學(xué)生的總?cè)藬?shù)是多少:

3)求成績在80-100分的學(xué)生人數(shù)是多少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為x2(y2)21,直線l的方程為x2y0,點P在直線l上,過點P作圓M的切線PA,PB,切點為AB.

()APB60°,試求點P的坐標(biāo);

()若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=時,求直線CD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點AB、CD的坐標(biāo)分別為A(3,0)、B(0,3)C(cosα,sinα),,α∈(,).

1)若,求角α的值;

2)若,求的值.

3)若在定義域α∈(,)有最小值,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).

1)已知函數(shù)具有性質(zhì),求出對應(yīng)的的值;

2)證明:函數(shù)一定不具有性質(zhì);

3)下列三個函數(shù):,,哪些恒具有性質(zhì),并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品需要甲材料,乙材料,并且需要花費1天時間;生產(chǎn)一件產(chǎn)品需要甲材料,乙材料,也需要1天時間,生產(chǎn)一件產(chǎn)品的利潤為1000元,生產(chǎn)一件產(chǎn)品的利潤為2000.該企業(yè)現(xiàn)有甲、乙材料各,則在不超過120天的條件下,求生產(chǎn)產(chǎn)品、產(chǎn)品的利潤之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)景秀美的寶湖畔有四棵高大的銀杏樹,記作A,B,P,Q,湖岸部分地方圍有鐵絲網(wǎng)不能靠近.欲測量P,Q兩棵樹和A,P兩棵樹之間的距離,現(xiàn)可測得A,B兩點間的距離為100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如圖所示.則P,Q兩棵樹和A,P兩棵樹之間的距離各為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面ABCD為梯形,,則在面PBC內(nèi)  

A. 一定存在與CD平行的直線

B. 一定存在與AD平行的直線

C. 一定存在與AD垂直的直線

D. 不存在與CD垂直的直線

查看答案和解析>>

同步練習(xí)冊答案