7.給出下列說法:
(1)若$\overrightarrow{a}$與$\overrightarrow$同向,且|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$;
(3)若$\overrightarrow{a}$=$\overrightarrow$,則$\overrightarrow{a}$∥$\overrightarrow$;
(4)若$\overrightarrow{a}$=$\overrightarrow$,則|$\overrightarrow{a}$|=|$\overrightarrow$|;
(5)若$\overrightarrow{a}$≠$\overrightarrow$,則$\overrightarrow{a}$與$\overrightarrow$不是共線向量.
其中正確說法的序號(hào)是(3)、(4).

分析 根據(jù)平面向量的基本概念,對(duì)題目中的命題進(jìn)行分析、判斷即可.

解答 解:對(duì)于(1),向量是矢量不能比較大小,∴命題錯(cuò)誤;
對(duì)于(2),當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),$\overrightarrow{a}$=$\overrightarrow$不一定成立,∴命題錯(cuò)誤;
對(duì)于(3),當(dāng)$\overrightarrow{a}$=$\overrightarrow$時(shí),$\overrightarrow{a}$∥$\overrightarrow$一定成立,∴命題正確;
對(duì)于(4),當(dāng)$\overrightarrow{a}$=$\overrightarrow$時(shí),兩向量大小相等即|$\overrightarrow{a}$|=|$\overrightarrow$|,方向相同,∴命題正確;
對(duì)于(5),當(dāng)$\overrightarrow{a}$≠$\overrightarrow$時(shí),$\overrightarrow{a}$與$\overrightarrow$也可能是共線向量,∴命題錯(cuò)誤.
綜上,正確的命題是(3)、(4).
故答案為:(3)、(4).

點(diǎn)評(píng) 本題考查了平面向量的基本概念與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個(gè)命題中.真命題的個(gè)數(shù)是( 。
①存在這樣的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
②不存在無窮多個(gè)角α和β,使cos(α+β)=cosαcosβ+sinαsinβ
③對(duì)于任意的角α和β,cos(α+β)=cosαcosβ-sinαsinβ
④不存在這樣的角α和β,cos(α+β)≠cosαcosβ-sinαsinβ
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2cos(ωx+φ)(0<φ<π)是奇函數(shù).
(1)求φ的值;
(2)若f(x)在區(qū)間(0,$\frac{π}{4}$)上是增函數(shù),求ω取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an-1(n∈N*),等差數(shù)列{bn}滿足b1=3a1,b3=S2+3
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{n+2}{_{n}•_{n+1}•{a}_{n}}$(n∈N*),且{cn}的前n項(xiàng)和為Tn,求證:Tn$<\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.拋物線y2=2px(p>0)上一點(diǎn)M到焦點(diǎn)F的距離|MF|=2p,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等差數(shù)列{an}中,a5=5,a4+a7=6,則a12=-23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)y=sin(x-$\frac{π}{3}$),則其單調(diào)增區(qū)間為$[-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ]$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,△ABC是等邊三角形,BM=CN,∠1=60°,∠DMN=2∠N,求證:∠N=30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,直線y=kx與函數(shù)y=lnx相切于點(diǎn)P(m,n),則函數(shù)f(x)=lnx-kx在x=e處,取得極大值,為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案