一個(gè)棱錐的三視圖如圖所示,則它的體積為
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:根據(jù)已知三視圖,我們結(jié)合棱錐的結(jié)構(gòu)特征易判斷出幾何體為四錐錐,結(jié)合三視圖中標(biāo)識(shí)的數(shù)據(jù),我們易求出棱錐的底面面積及棱錐的高,代入棱錐體積公式即可得到答案.
解答: 解:由已知三視圖我們可得:
棱錐以俯視圖為底面,
以主視圖高為高,故h=1,
S底面=
1
2
×(1+2)×1=
3
2
,
故V=
1
3
S底面h=
1
2
,
故答案為:
1
2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根據(jù)三視圖求幾何體的體積,其中根據(jù)已知三視圖,結(jié)合簡(jiǎn)單幾何體的結(jié)構(gòu)特征易判斷出幾何體的形狀,和相關(guān)的幾何量(底面邊長(zhǎng),高)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)F為拋物線C1:y2=4x的焦點(diǎn),過點(diǎn)F任作兩條互相垂直的直線l1,l2,分別交拋物線C1于A,C,B,D四點(diǎn),E,G分別為AC,BD的中點(diǎn).
(Ⅰ)當(dāng)直線AC的斜率為2時(shí),求直線EG的方程;
(Ⅱ)直線EG是否過定點(diǎn)?若過,求出該定點(diǎn);若不過,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二維空間中圓的二維度(面積)S=πr2,一維測(cè)度(周長(zhǎng))l=2πr; 三維空間中球的三維測(cè)度(體積)V=
4
3
πr3,二維測(cè)度(表面積)S=4πr2.若四維空間中“超球”的四維測(cè)度W=2πr4,根據(jù)上述規(guī)律,猜想其三維測(cè)度(體積)V=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x2,x+1),
b
=(1-x,t),若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上是增函數(shù),則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)α∈(0,π),且α≠
π
2
,當(dāng)∠xOy=α?xí)r,定義平面坐標(biāo)系xOy為α-仿射坐標(biāo)系,在α-仿射坐標(biāo)系中,任意一點(diǎn)P的斜坐標(biāo)這樣定義:
e1
e2
分別為x軸,y軸正向相同的單位向量,若
OP
=x
e1
+y
e2
,則記為
OP
=(x,y),那么在以下的結(jié)論中,正確的序號(hào)有
 

a
=(m,n),則|
a
|=
m2+n2
;
a
=(m,n),
b
=(s,t),若
a
b
,則mt-ns=0;
a
=(1,2),
b
(2,1),若
a
b
的夾角為
π
3
,則α=
3

a
=(m,n),
b
=(s,t),若
a
b
,則ms+nt=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,直線x-2y+5=0上動(dòng)點(diǎn)P,過點(diǎn)P作圓O的一條切線,切點(diǎn)為A,則
PO
PA
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),其中x∈(0,
π
2
),則f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人從甲地去乙地共走了500m,途經(jīng)一條寬為xm的河流,他不小心把一件物品丟在途中,若物品掉在河里就找不到,若物品不掉在河里,則能找到,已知該物品能被找到的概率為
4
5
,則河寬為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=ax2+2014在點(diǎn)(1,a+2014)處的切線與直線2x-y-2015=0平行,則a=(  )
A、1
B、
1
2
C、-
1
2
D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案