設(shè)函數(shù),且①;②有兩個單調(diào)遞增區(qū)間,則同時滿足上述條件的一個有序數(shù)對為______________

滿足的任一組解均可

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),若存在x0,使得f(x0)=x0,則稱x0是函數(shù)y=f(x)的一個不動點,設(shè)二次函數(shù)f(x)=ax2+(b+1)x+b-2
(Ⅰ)當(dāng)a=2,b=1時,求函數(shù)f(x)的不動點;
(Ⅱ)若對于任意實數(shù)b,函數(shù)f(x)恒有兩個不同的不動點,求實數(shù)a的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,若函數(shù)y=f(x)的圖象上A,B兩點的橫坐標(biāo)是函數(shù)f(x)的不動點,且直線y=kx+
1a2+1
是線段AB的垂直平分線,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+(
a
2
-1)x2+ax(a∈R)
(I)證明:函數(shù)f(x)總有兩個極值點x1,x2且|x1-x2|≥2;
(II)設(shè)函數(shù)f(x)在(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省巢湖市無為中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù),且f(-4)=f(0),f(-2)=-1.
(1)求函數(shù)f(x)的解析式; 
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)f(x)的單調(diào)區(qū)間.
(3)若方程f(x)=k有兩個不等的實數(shù)根,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省馬鞍山市高三第一次教學(xué)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)設(shè)函數(shù),且的極值點.

(Ⅰ) 若的極大值點,求的單調(diào)區(qū)間(用表示);

(Ⅱ) 若恰有兩解,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

設(shè)函數(shù)f(x)=x3+3bx2+3cx有兩個極值點x1、x2,且x1∈[-1,0],x2∈[1,2],
(Ⅰ)求b、c滿足的約束條件,并在下面的坐標(biāo)平面內(nèi),畫出滿足這些條件的點(b,c)的區(qū)域;
(Ⅱ)證明:-10≤f(x2)≤

查看答案和解析>>

同步練習(xí)冊答案