【題目】已知二次函數(shù)有兩個零點-3和1,且有最小值-4.
(1)求的解析式;
(2)寫出函數(shù)單調(diào)區(qū)間;
(3)令,若,證明:在上有唯一零點.
【答案】(1);(2)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(3)詳見解析.
【解析】
(1)根據(jù)二次函數(shù)有兩個零點-3和1,設(shè)出二次函數(shù),頂點坐標(biāo)代入函數(shù)式,即可求出解析式;
(2)根據(jù)二次函數(shù)的開口方向和對稱軸,求出單調(diào)區(qū)間;
(3)由,結(jié)合,判斷在單調(diào)性,再由零點存在性原理即可得證.
(1)依題意可得拋物線的頂點坐標(biāo)為,設(shè)
代入解析式得,
(2)由(1)得的對稱軸方程為,開口向上,
所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.
(3),其對稱軸方程為,
所以在單調(diào)遞遞增,,
在沒有零點; 在單調(diào)遞減,且,
且拋物線開口向下,在上有唯一零點,
所以在上有唯一零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時,記的最小值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值點為1,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)的和.
(1)求g(x)和h(x)的解析式;
(2)若f(x)和g(x)在區(qū)間(-∞,(a+1)2]上都是減函數(shù),求f(1)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:.
若圓C的切線l在x軸和y軸上的截距相等,且截距不為零,求切線l的方程;
已知點為直線上一點,由點P向圓C引一條切線,切點為M,若,求點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點;光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出.如圖,一個光學(xué)裝置由有公共焦點,的橢圓與雙曲線構(gòu)成,現(xiàn)一光線從左焦點發(fā)出,依次經(jīng)與反射,又回到了點,歷時秒;若將裝置中的去掉,此光線從點發(fā)出,經(jīng)兩次反射后又回到了點,歷時秒;若,則與的離心率之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為.過拋物線上一點作的切線交橢圓于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使得,若存在,求出的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com