11.在△ABC中,a,b,c分別是內(nèi)角A,B,C的對邊,已知△ABC的面積S=$\frac{3\sqrt{3}}{4}$,c=$\sqrt{7}$,sin2A+sin2B-sin2C-sinAsinB=0.
(1)求角C;
(2)求a+b.

分析 (1)利用正弦定理化簡已知的等式,得到三邊的關(guān)系式,再利用余弦定理表示出cosC,把得到的三邊關(guān)系式變形后代入求出cosC的值,根據(jù)C為三角形的內(nèi)角,可求C的值;
(2)利用同角三角函數(shù)間的基本關(guān)系求出sinC的值,由三角形面積公式可求ab的值,利用余弦定理即可可求出a+b的值.

解答 解:(1)利用正弦定理化簡sin2A+sin2B-sinAsinB=sin2C,
得:a2+b2-ab=c2,即a2+b2-c2=ab,
∴根據(jù)余弦定理得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C為三角形的內(nèi)角,則解得:C=$\frac{π}{3}$.
(2)∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{3}}{2}$,
∵S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{4}$,解得ab=3,
則由余弦定理可得:c2=a2+b2-2abcosC,可得:7=a2+b2-ab=(a+b)2-3ab=(a+b)2-9.解得:a+b=4.

點(diǎn)評 此題考查了正弦、余弦定理,三角形的面積公式,以及同角三角函數(shù)間的基本關(guān)系,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.$\sqrt{l{g}^{2}98+4lg98+4}$=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+lna3+…+lna20=50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程(1+λ)x+(2λ-1)y+(1-8λ)=0(λ∈R)過某定點(diǎn),此定點(diǎn)的坐標(biāo)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+4a(x<1)}\\{(a-3)x+4a(x≥1)}\end{array}\right.$,滿足對任意x1≠x2,都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則a的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.(0,1)D.[1,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A、B、C成等差數(shù)列,b=$\sqrt{3}$,則△ABC的周長的最大值為( 。
A.3$+\sqrt{3}$B.2$+\sqrt{3}$C.1$+2\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.方程2x+x=2,log2x+x=2,2x=log2(-x)的根分別為a,b,c,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線2x+2y+1=0,x+y+2=0之間的距離是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

同步練習(xí)冊答案